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ABSTRACT

Astronomical data sets have experienced an unprecedented and continuing growth in the volume, quality, and
complexity over the past few years, driven by the advances in telescope, detector, and computer technology.
Like many other fields, astronomy has become a very data rich science. Information content measured in
multiple Terabytes, and even larger, multi Petabyte data sets are on the horizon. To cope with this data flood,
Virtual Observatory (VO) federates data archives and services representing a new information infrastructure
for astronomy of the 21st century and provides the platform to science discovery. Data mining promises to
both make the scientific utilization of these data sets more effective and more complete, and to open completely
new avenues of astronomical research. Technological problems range from the issues of database design and
federation, to data mining and advanced visualization, leading to a new toolkit for astronomical research. This
is similar to challenges encountered in other data intensive fields today. Outlier detection is of great importance,
as one of four knowledge discovery tasks. The identification of outliers can often lead to the discovery of truly
unexpected knowledge in various fields. Especially in astronomy, the great interest of astronomers is to discover
unusual, rare or unknown types of astronomical objects or phenomena. The outlier detection approaches in
large datasets correctly meet the need of astronomers. In this paper we provide an overview of some techniques
for automated identification of outliers in multivariate data. Outliers often provide useful information. Their
identification is important not only for improving the analysis but also for indicating anomalies which may
require further investigation. The technique may be used in the process of data preprocessing and also be used
for preselecting special object candidates.
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1. INTRODUCTION

Huge quantities of data generated by modern astronomical instruments are collected and stored in databases,
increasing the need for efficient and effective automated analysis methods to process the data and mining the
information contained implicitly in the data. Knowledge discovery in databases (KDD) has been defined as
the non-trial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in
data (Fayyad, et al. 1996). Corresponding to the kind of patterns to be discovered, several KDD tasks can be
distinguished.

In general, KDD tasks can be classified into four categories: (a) dependency detection, (b) class identification,
(c) class description, and (d) exception/outlier detection. The first three categories of tasks correspond to
patterns that apply to many objects, or to a large percentage of objects, in the data. Most research in data
mining, such as association rules, classification, and data clustering, belongs to these three categories. The
fourth category, in contrast, focuses on a very small percentage of data objects, which are often ignored or
discarded as noise. For example, some existing algorithms in machine learning and data mining have considered
outliers, but only to the extent of tolerating them in whatever the algorithms are supposed to do.

There are many definitions for outliers which differ in words (Hawkins, 1980; Beckman & Cook, 1983;
Barnett & Lewis, 1987; Tabachnick & Fidell, 1996). We use the one of Hawkins (1980), who defined an
outlier is an observation that deviates so much from other observations so that it aroused suspicions that it is
generated by a different mechanism. From a knowledge discovery standpoint, the rare events are often more
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interesting than the common ones. For example, outlier detection has numerous applications, including credit
card fraud detection, discovery of criminal activities in E-commerce, video surveillance, pharmaceutical research,
weather prediction, the analysis of performance statistics of professional athletes and discovery of rare, unusual
or unknown astronomical objects or phenomena. In addition, identification of outliers has recently begun to
interest us for two reasons. Firstly, we consider balancing the imbalanced class distribution by reducing the
largest classes before analysis. Outliers of the major classes seem to be worthwhile candidates for removal. Such
outliers are treated as poor data which may be removed without further analysis. Secondly, the identification
of outliers may give us some additional insight of data and often lead to the discovery of truly unexpected
knowledge. Outliers are not outright dropped from data, instead they are presented to experts for further
consideration.

In astronomy, systematic exploration of the observable parameter space, covered by large digital sky surveys
spanning a range of wavelengths, will be one of the primary modes of research with a Virtual Observatory
(VO) (Djorgovski, et al. 2001). The new, Vo-enabled astronomy is broadly grouped into two kinds. First,
statistical astronomy will be performed, i.e. studies such as the mapping and quantification of the large scale
structure in the universe, of the Galactic structure, construction and studies of complete samples of all kinds of
objects. The second kind is to systematically explore the poorly known portions of the observable parameter
space, and specifically search for rare, unusual, or even previously unknown types of astronomical objects and
phenomena, e.g., as outliers in some parameter space of measured properties, both in the catalog and image
domains. High-redshift quasars, type-2 quasars, brown dwarfs, and a small number of objects with puzzling
spectra are examples of this. With the large numbers of detected sources, we may look for the rare events
which would be unlikely to be found in smaller data sets. Rare objects may not be discriminated from the more
common variety in some observable parameters, but be separated in other observable attributes.

In this paper, we first introduce the characteristics of astronomical data and the challenges by the complex-
ness of the data. In detail, we review the sources and effects of outliers, and the techniques to detect outliers.
In addition, we touch upon the data mining and knowledge discovery based on Virtual Observatory.

2. THE CHARACTERISTICS OF ASTRONOMICAL DATA

With the rapid development of observational technologies, astronomical data become more and more complex.

1. The huge volumes of astronomical data

Astronomical data are measured by Terabytes, even by Petabytes. Such huge amounts of data make some
methods not to be applicable due to the difficulty of algorithms and huge efforts in computing. Therefore one
task of knowledge discovery is to create new algorithm schemes and develop new efficient algorithms to overcome
the technological difficulty caused by huge amounts of data.

2. The nonlinear relationship between the attributes of astronomical data

The nonlinear relationship between the attributes of astronomical data is the important characteristics of
the complexness in the whole astronomical fields, of which there are complex mechanisms of inner interaction.

3. High dimensions of astronomical data

The next generation astronomy digital archives will cover most of the sky at fine resolution in many wave-
lengths, from X-rays through ultraviolet, optical, and infrared. In different wavelengths, astronomical data
follow different laws and show different properties. A complete observable parameter space axes include quan-
tities such as the object coordinates, velocities or redshifts, sometimes proper motions, fluxes at a range of
wavelength (i.e., spectra; imaging in a set of bandpasses can be considered a form of a very low resolution spec-
troscopy), surface brightness and image morphological parameters for resolved sources, variability (or, more
broadly, power spectra) over a range of time scales, etc. A typical VO data set may have the following prop-
erties: ∼ 109 data vectors in ∼ 102 dimensions. This is another complex characteristic of astronomical data.
How to extract information from such high dimensional data is one challenge of knowledge discovery.

4. Heterogenous property of astronomical data



The data derived from different sources (e.g. from different surveys or from different projects) have different
structures. Moreover the formats of data are various, for example, structural, half-structural and non-structural.
The kinds of data include photometric data, spectral data, morphological data, image data, time data and so
on.

5. Missing values in astronomical data

The missing values arise from some unexpected outside force (e.g. low sensitivity of instruments, bad
weather). Some objects are undetected in one or more bandpasses. So they loss the information of the band-
passes. How to restore the missing values and evaluate the intrinsic distribution parameters is one of difficulties
to deal with the complexness of data.

All these challenges described above propose high requirement for data mining and knowledge discovery. At
the same time, they are the strong push to accelerate the development of data mining and knowledge discovery.

3. THE SOURCES AND EFFECTS OF OUTLIERS

According to the number of data dimension, outliers are divided into univariate outliers and multivariate
outliers. In some statistics literatures (White, 1992; Knorr, 2002), multivariate outliers are subdivided into two
forms: gross outliers and structural outliers. Gross outliers are those observations that outlying for one or more
individual attributes. In other words, a gross outlier is an outlier in one dimension for at least one variable.
Structural outliers do not own this property. However, they are outlying relative to the covariance structure of
the non-outlying data. Structural outliers may or may not be detected visually in 2-D scatter plots or 3-D spin
plots. In some cases, they may be detected only when all k dimensions are simultaneously considered.

According to the distribution of the underlying data points, an outlier can be one or more of following
entities (Knorr, 2002):

a. an extreme or relatively extreme value
b. a contaminant, that is, an observation from some other (possible unknown) distribution
c. a legitimate, but surpring/unexpected data value
d. a data value that was measured or recorded incorrectly

Human error often produces unintentional outliers. Data entry may be incorrect and missing value codes
are sometimes used as real data. Outliers are frequently generated as the result of the natural variation of
population or process one cannot control. These outliers are from the intended population, but their values are
unusual in comparison with the normal values. It is also possible to have an outlier that is not a member of
population due to a sampling error (Barnett & Lewis, 1987; Tabachnick & Fidell, 1996). In one word, various
origins of outliers are summarized as follows :

a. Data entry errors, due to recording and measurement errors, can produce outliers.
b. Incorrect distribution assumption is given for unknown data structure.
c. Sometimes the cases are not a homogeneous set to which a single model will apply, but rather a

heterogeneous set of two or more types of cases. One of these types will be far more frequent than the
other, forcing the few to be identified as outliers.

d. The fourth cause of outliers is produced by error distributions with thick tails, in which extreme
observations occur with greater frequency than expected for a normal distribution. Least squares
solutions are fairly robust to violations of the assumption that the errors are normally distributed,
except when the violation is that the distribution has thick tails. Ironically, sampling distributions
that look quite different from a normal distribution cause little trouble, while these thick tail
distributions raise cane with F interpretations.

e. Rare events or novel phenomena arise.

Developing techniques to detect outliers and understanding how they impact data analysis are extremely
important parts of a thorough analysis, especially when statistical techniques are applied to the data. Due to
outliers occurring in data, they cause different effects. For example, in the presence of outliers, any statistical
test on sample means and variances can be distorted. Estimated regression coefficients that minimize the sum of
squares for error are very sensitive to outliers. There are several other problematic effects of outliers, including



a. bias or distortion of estimates
b. inflated sums of squares (which make it unlikely you’ll be able to partition sources of variation in the

data into meaningful components.)
c. distortion of p-values (statistical significance, or lack thereof, can be due to the presence of a few or

even one unusual data value)
d. faulty conclusions (it’s quite possible to draw false conclusions if one hasn’t looked for indications that

there was anything unusual in the data)

Despite the difficulties, exploring why outliers exist can provide many clues to the development of better
models. In fact, many great discoveries in human history can be traced to a researcher exploring some outlying
or unusual value. Outliers may indicate that an important range of the data has been ignored that is worth
knowing about. In astronomy, astronomers pay attention to the outlying data so that they discover high
redshift quasars, brown dwarfs, pulsars, and so on. The exploration of observable parameter spaces, created by
combining of large sky surveys over a range of wavelengths, will be one of the chief scientific purposes of a VO.
This includes an exciting possibility of discovering some previously unknown types of astronomical objects or
phenomena.

4. METHODOLOGY

Methods for univariate outliers include z-Scores, box plot, histogram, and so on. Barnett and Lewis (1994)
provide a comprehensive treatment, listing about 100 discordancy tests for normal, exponential, Poisson, and
binomial distributions. The choice of appropriate discordancy tests depend on: (i): the distribution (ii):
whether or not the distribution parameters(e.g., mean and variance) are known. (iii): the number of expected
outliers, and even (iv): the type of expected outliers(e.g., lower or upper outliers in ordered sample). Most of
the discordancy tests that we have encountered are univariate, and are specific to certain distributions having
specific types and numbers of outliers. In numerous data mining situations where we do not know whether a
particular attribute follows a normal distribution, a gamma distribution, and so on, we would have to perform
extensive testing to find a distributions that fits the attribute. Furthermore, some of these tests may not be
well-suited to large datasets.

All these methods of univariate outlier detection are based on unarguable order of data values. For N mul-
tivariate observations, there is no unambiguous total ordering. But different sub-orderings have been suggested
(Barnett & Lewis, 1987; Barnett, 1976), of which the reduced sub-ordering is the most often used in the outlier
study (Barnett & Lewis, 1987). Reduced sub-ordering is established in two phases (Barnett & Lewis, 1987;
Barnett, 1976). Firstly, a set of scalars R = ri(i = 1, ..., N) is produced by transforming each multivariate
observation xi into a scalar ri. Then, R is sorted to produce the actual ordering of the multivariate data.
The transformation is often done with a distance metric (Barnett, 1976) and, therefore, the extremes are those
multivariate observations associated with the largest values in R.

The sub-ordering used is based on the generalized distance metric (Laurikkala, et al. 2000)

r2

i = (xi − x0)Γ
−1(xi − x0)

T (1)

where x0 indicates the location of the data set and Γ−1 weights variables inversely to their scatter. Different
choices of these parameters result in different distance metrics. For example, when Γ is the identity matrix I,
(1) defines the Euclidean distance of xi to the location of the data set.

Mahalanobis distance is used in the multivariate outlier identification, and obtained from (1) by selecting Γ
to be the population covariance matrix Σ (Laurikkala, et al. 2000). In general, the population mean µ was used
as the location parameter (Barnett & Lewis, 1987; Tabachnick & Fidell, 1996; Gnanadesikan & Kettenring,
1972). Often the population values are unknown and they are estimated with sample mean vector m and sample
covariance matrix S (Jain & Dubes, 1988; Boberg, 1999).

The estimate of the covariance matrix is as follows (Laurikkala, et al. 2000):

r2

i = (xi − m)S−1(xi − m)T (2)



Mahalanobis distance incorporates the dependencies between the attributes (Laurikkala, et al. 2000). This
property is essential in multivariate outlier identification, where the goal is to detect unusual value combina-
tions. Many distance metrics, including Euclidean distance, utilize only location information and are, therefore,
unsuitable for this task. Another advantage of Mahalanobis distance is that the unit of variable has no influence
on the distance, because each variable is standardized to mean of zero and variance of one.

For the ordered reduced univariate measures ri, we may adopt univariate outlier detection method to evaluate
whether outliers exist in data. Measures of relative location and locating outliers include z-Scores, Chebyshev’s
Theorem, and the Empirical Rule. The z-score is often called the standardized value. It denotes the number of
standard deviations a data value ri is from the mean.

zi =
ri − r̄

σ
(3)

where r̄ and σ are the mean and variance of ri(i = 1, ..., N), respectively. If |zi| ≥ 3, xi is considered as a
outlier, otherwise, xi is not a outlier.

Chebyshev’s Theorem is described as: at least (1 − 1/k2) of the items in any data set will be within k
standard deviations of the mean, where k is any value greater than 1. At least 75% of the items must be within
k = 2 standard deviations of the mean. At least 89% of the items must be within k = 3 standard deviations of
the mean. At least 94% of the items must be within k = 4 standard deviations of the mean.

As Empirical Rule describes, for data having a bell-shaped distribution, approximately 68% of the data
values will be within one standard deviation of the mean. Approximately 95% of the data values will be within
two standard deviations of the mean. Almost all of the items 99% will be within three standard deviations of
the mean.

Another way is statistical technique. For α level of significance, the critical value is given

r∗ =
p(n − 1)2Fα,p,n−p−1

n(n − p − 1) + npFα,p,n−p−1

(4)

where n is sample size, p is the number of variables, and Fα,p,n−p−1 is α-level value of F -distribution with p
and (n − p − 1) degrees of freedom. If ri > r∗, observation vector xi is identified as an outlier at level α.

In addition, the graphical methods, such as box plots or histograms, are used for visualization. For the
box plot method, the box is defined by 3 long horizontal line segments which mark the lower quartile (Q1),
median, and upper quartile (Q2); this covers 50% of the data. The range between the upper quartile and the
lower quartile is defined as the interquartile range or IQ. The following quantities (called fences) are needed for
identifying extreme values in the tails of the distribution:

1. lower inner fence: Q1-1.5IQ
2. upper inner fence: Q2+1.5IQ
3. lower outer fence: Q1-3.0IQ
4. upper outer fence: Q2+3.0IQ

A point beyond an inner fence on either side is considered a mild outlier. A point beyond an outer fence is
considered an extreme outlier. Box plots are most suitable for exploring both symmetric and skewed quantitative
data, but they can also identify infrequent values from categorical data (Laurikkala, et al. 2000).

The studies on outlier detection can be broadly classified into six categories. The first is distribution-based,
where a standard distribution (e.g. Normal, Poisson, etc.) is used to fit the data best and outliers deviate from
the distribution (Barnett & Lewis, 1994). Over one hundred tests of this category, called discordancy tests, have
been developed for different scenarios. A key drawback of this category of test is that most of the distributions
used are univariate. There are some tests that are multivariate (e.g. multivariate normal outliers). But for
many KDD applications, the underlying distribution is unknown. Fitting the data with standard distributions
is costly, and may not produce satisfactory results. The second category of outlier detection is depth-based
which relies on the computation of different layers of k-d convex hulls. In depth-based methods, outliers are
observations which distribute in the outer layer of these hulls. In theory, depth-based approaches could work



for large values of k. However, in practice, while there exist efficient algorithms for k = 2 or 3 (Preparata &
Shamos, 1988; Ruts & Rousseeuw, 1996; Johnson et al. 1998), depth-based approaches become inefficient for
large data sets for k ≥ 4. Knorr and Ng (1998) proposed the notion of distance-based outliers. A distance-based
outlier in a dataset D is an object with pct% of the objects in D having a distance of more than dmin away
from it. Their notion generalized many notions from distance-based approaches and is further extended by
Ramaswamy et al. (2000), so that outliers can be more efficiently discovered and ranked. Another category is
density-based, which applies to a certain degree to each object in a data set, depending on how isolated this
object is, with respect to the surrounding clustering structure. Breuning et al. (1999, 2000) put forward an
outlier detection approach named ”OPTICS-OF”, which is based on the same theoretical foundation as density-
based cluster analysis. Their notion of an outlier is local in the sense that the outlier-degree of an object is
determined by taking into account the clustering structure in a bounded neighborhood of the object. The merit
of the method is more appropriate for detecting different types of outliers than previous approaches. The fifth
category is clustering-based. Most clustering algorithms, especially those developed in the context of KDD
(e.g. CLARANS, DBSCAN, BIRCH, STING, WaveCluster, DenClue, CLIQUE), are to some extent capable
of handling exceptions (Breuning, et al. 2000, and references therein). However, since the main objective of a
clustering algorithm is to find clusters, they are developed to optimize clustering, and not to optimize outlier
detection. The exceptions (called ”noise” in the context of clustering) are typically just to tolerated or ignored
when producing the clustering result. Though the outliers are not ignored, the notions of outliers are essentially
binary, and there are no quantification as to how outlying an object is. Another kind of outlier detection is
deviation-based. Crawford et al. (1995) detect outliers using genetic algorithms, which is an optimization
technique based on various biological principles. This approach is capable of searching for global optima among
a vast number of choices. By intelligent but somewhat random generation of subsets of data, potential sets of
outliers are identified by minimizing the residual sum squares produced by the least squares method. Other
kinds of outlier detection methods, such as fuzzy set theory (Last & Kandel, 2001), parallel algorithm (Hung
& Cheung, 2002), wavelet based multifractal formalism (Struzik & Siebes, 2000), are in research.

5. VO-ENABLED DATA MINING

Astronomers are accustomed to apply physical criterions for distinguishing their interested objects from the
uninteresting majority. For example, most quasars have been found by the properties of radio-loud point
sources and UV excess objects, etc. ; ultraluminous IRAS galaxies own anomalous large FIR/visible flux ratios;
variable stars and distant supernovas have particular types of light curves; and so on. The discovery of quasars
and radio-galaxies, or ULIRGs, or LMXBs, or intra-cluster x-ray gas depend on the fact that these objects
discriminate themselves with unusual broad-band energy distributions.

Some objects are unresolved in some parameter space, but distinguishable in other parameter spaces. With
their flux ratios in different bands, e.g. colors, some objects are founded. IRAS sources are classified as probable
stars or galaxies by FIR flux ratios. Likewise, the color selection method is a good way to discover high-z quasars.
DPOSS discovered high-z and type-2 quasars by the method (Djorgovski et al. 1998). Normal stars form a
temperature sequence, as a banana-shaped locus of points in the parameter space of colors; while high-z and
type-2 quasars are away from the locus. This color parameter space provide a good discrimination among these
types of objects. Similar method is also used to discover brown dwarfs in SDSS and 2MASS. A variant of this
technique (based also on the Lyman-limit drop) is now applied to find galaxies at z ≥ 3 (Djorgovski et al. 2001
and references therein). With image morphology, we can classify and select galaxies of a particular type.

Though physical criterions and color selection, we find some rare but known types of objects. Certainly,
looking for new kinds of objects is more exciting. In future, the most intriguing new prospect for a VO is the
possibility of discovery of previous unknown types of astronomical objects and phenomena. A VO may provide
a thorough, large-scale, unbiased, multi-wavelength census of the universe, which make it possible to find more
interesting and meaningful objects or phenomena. While some may simply turn out to be little more than
curiosities, others may be representative of genuine new astrophysical phenomena (Djorgovski et al. 2001).
The whole process of data mining (DM) and knowledge discovery in databases (KDD) in a VO is illustrated
in Figure 1. Much of the power of a VO will be the platform to access, rapidly and efficiently, multiple data
archives across a broad range of wavelengths and provide federated data sets, which would enable new insight



Figure 1. VO-enabled data mining and knowledge discovery

not obtained by any of data sets individually. Through multi-wavelength cross-identification, the VO federates
various databases. The results are grouped into four forms: one-to-nearest entries, one-to-many entries, one-
to-none entries, many-to-none entries. Such an example can refer to Zhang & Zhao (2003). For one-to-nearest
entries, we deal with the attributes by feature selection or feature extraction and get optimized parameters
used for DM/KDD. For one-to-many entries, probability analysis is needed to evaluate the probability of cross-
identification and determine which is the true counterparts. For the last two situations, expert knowledge
is necessary. Usually the two situations are especially important, for some unusual discoveries exactly arise
from the situations. By means of DM/KDD and expert knowledge, new knowledge is obtained, then the
knowledge is returned into the whole process and push the process to go forward. With more and more
knowledge continuously accumulating, the theories will be enriched and pushed to go forward. As a result,
we understand the universe more deeply. Although the process appears to be conceptually straightforward,
it do require vast computational effort including the detection and federation of different datasets, automated
statistical analysis and novel visualization of the final products. The results of the process will still require
significant interpretation by users. The main advantages of a VO are to release scientists from the burden of
data management and manipulation to spend their most precious resource and to improve their efficiency.

With the development of the quantity and quality of data , we are in urgent need of automated tools of data
ming and knowledge discovery. This is generally falling in the area of unsupervised clustering, classification and
exception/outlier detection. If the number of object classes is known and training data set of representative
objects is available, the problem reduces to supervised classification. The searches of known types of objects
with predictable signatures in the parameter space can be cast in this way. If the number of object classes
is unknown, the data themselves can be grouped into some clusters in some objective and statistically sound
manner by the unsupervised classification. The objects belonging to much less populated clusters are of special
interest. In order to find special objects as many as possible, the outlier detection methods are in great demand.
Many successful experiences in other fields are summarized in section 4. We need to learn their methods and
transform the methods according to the characteristics of astronomy.

6. CONCLUSION

Outlier detection is an important task for many KDD applications. In many proposals, outliers are only
considered as a binary property. In this paper we show outlier detection is not a binary property, but a
meaningful thing. Outlier detection in other fields is reviewed in detail, providing new thoughts and sights to



detect outliers in astronomical data. Although this paper only skims the surface of dealing with outliers, it’s
presented with the hope that looking for unusual data values will become a regular part of our analysis, and
that our research objectives and knowledge of our subject matter will help us decide what to do with them
once we find them. A VO, federating various resources from different large, digital sky surveys, would enable us
to thoroughly and systematically explore the observable space, and to understand the physical universe more
completely and unbiasedly. Meanwhile, the VO may provide all kinds of data mining toolkits to mine the sky.
We need develop efficient and effective outlier detection methods fit for characteristics of astronomical data in
order to find the potential useful, rare or unknown types of objects and phenomena. These methods can be used
to preselect source candidates and improve the efficiency of high-cost telescopes and enrich the data mining
toolkits of VO.
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