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ABSTRACT

The important step of data preprocessing of data mining is feature selection. Feature selection is used to
improve the performance of data mining algorithms by removing the irrelevant and redundant features. By
positional cross-identification, the multi-wavelength data of 1656 active galactic nuclei (AGNs), 3718 stars, and
173 galaxies are obtained from optical (USNO-A2.0), X-ray (ROSAT), and infrared (Two Micron All- Sky
Survey) bands. In this paper we applied a kind of filter approach named ReliefF to select features from the
multi-wavelength data. Then we put forward the naive Bayes classifier to classify the objects with the feature
subsets and compare the results with and without feature selection, and those with and without adding weights
to features. The result shows that the naive Bayes classifier based on ReliefF algorithms is robust and efficient
to preselect AGN candidates.

Keywords: Feature selection, Classification, Astronomical databases: miscellaneous, Catalogs, Methods: Data
Analysis, Methods: Statistical

1. INTRODUCTION

Astronomy is entering a new data avalanche era as multiple, large area, digital sky surveys in production. Many
of the catalogs will cover different wavebands, from the radio to optical/infared all the way to the X-rays, even
rays. The amount of catalogued data is measured by Terabytes, even Petabytes. The aggregation and federation
of the multi-wavelength datasets, however, is a challenging task to astronomers. To solve the problems, the
international virtual observatory alliance establishes. Data mining is a major factor of virtual observatory.
Since celestial objects generally radiate energy over an extremely wide range of wavelengths. Each of these
observations carries important information about the nature of the objects. Consequently, in order to study
the properties of objects in detail, we need to consider the various parameters from different bands and classify
objects in the multidimensional parameter space. However,the answers to the questions are based not only on
the improvement of the technologies of telescopes and detectors, but also on the development of well-automated
classification tools.

When data mining aims to solve larger, more complex tasks, it has become increasing important how to deal
with the most relevant information in a potentially overwhelming quantity of data. With a data flood coming,
the typical data set consists of ~ 10% — 10% sources with ~ 10% measured attributes each, i.e., a set of ~ 10°
data vectors in a 100-dimensional parameter space. In many cases, the majority of the features handled by data
mining scheme are irrelevant or redundant. From a data perspective, it is necessary to perform pre-processing
and then select a subset of features. A successful choice of features provided to a classifier can improve its
accuracy, save the computation time, and simplify its result.

John et al. (1994) proposed two models to select a “good” set of features under some objective function. The
feature filter model assumes filtering the features before applying an induction algorithm, while the wrapper
model uses the induction algorithm itself to evaluate the features. In detail, the wrapper employs a statistical
re-sampling technique with the actual target learning algorithm to estimate the accuracy of feature subsets.
This method has proved useful but is very slow to execute because the learning algorithm is called repeatedly.
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Figure 1. the scheme of classification

As a result, wrappers do not scale well to large datasets containing many features. In contrast, the filter operates
independently of any learning algorithm. The undesirable features are filtered out of the data before induction
commences. Filters typically make use of all the available training data when selecting a subset of features.
Some look for consistency in the data, namely they note when every combination of values for a feature subset
is associated with a single class label (Almuallim and Dietterich, 1992). Another method (Koller and Sahami,
1996) eliminates features whose information content is subsumed by some number of the remaining features.
Still other methods attempt to rank features according to a relevancy score (Kira and Rendell, 1992; Holmes
and Nevill-Manning, 1995). Filters have proven to be much faster than wrappers and hence can be applied to
large data sets containing many features. Their general nature allow them to be used with any learner, unlike
the wrapper, which must be re-run when switching from one learning algorithm to another. As for the review
of feature selection can refer to Liu and Motoda (1998).

Quasar candidate selection methods employed by previous surveys include radio selection, color selection,
slitless spectroscopy (SS) selection, X-ray selection, and selection by infrared sources, by variability, or by
zero proper motion. In order to construct highly complete samples, combined methods have recently been
employed. For example, the Large Bright Quasar Survey (LBQS; Hewett, Foltz, & Chaffee 1995) used both
color and SS selection. Zhang et al. (2002, 2003a, 2003b) explored automated classification methods, Learning
Vector Quantization (LVQ), Support Vector Machine (SVM), and these two approaches combined with principal
component analysis (PCA) to preselect AGN candidates. Their results add up to high accuracy.

In this paper, we introduce an efficient feature selection algorithm, called ReliefF, which evaluates each
attribute by its ability to distinguish among instances that are near each other. Their selection criterion, the
feature relevance, is applicable to numeric and nominal attributes. The threshold of relevancy is determined
statistically by using Chebyshev’s inequality, which is not sharp enough making a clear distinction between
relevant and non-relevant features. With the subset of features obtained by ReliefF, we divide the data into
two parts: one as the training set, another as the test set. Then we use the training set to train the naive Bayes
and get the naive Bayes classifier. With the test set to test the classifier, we apply the classifier to classify the
new data if the classifier is good. The whole scheme is described in Figure 1. We compare the results with and
without feature selection, and those with and without adding weight to features.

2. METHODOLOGY
2.1. ReliefF

The ReliefF algorithm (Kononenko, 1994; Robnik-Sikonja & Kononenko, 2003) (See Figure 2) is the extension of
the Relief algorithms. The original Relief can deal with nominal and numerical attributes, however it cannot deal
with incomplete data and is limited to two-class problems. In contrast, the ReliefF algorithm solves these and



other problems, moreover it is not limited to two class problems, is more robust and can deal with incomplete
and noisy data. ReliefF randomly selects an instance R; (line 3), then search for k of its nearest neighbors
from the same class, called nearest hits H; (line 4), and also k nearest neighbors from each of the different
classes, called nearest misses M;(C) (lines 5 and 6). It updates the quality estimation W[A] for all attributes A
depending on their values for R;, hits H; and misses M;(C) (lines 7, 8 and 9). The update formula is similar to
that of Relief, except that we average the contribution of all the hits and all the misses. The contribution for
each class of the misses is weighted with the prior probability of that class P(C) (estimated from the training
set). Since we want the contributions of hits and misses in each step to be in [0,1] and also symmetric, we have
to ensure that misses’ probability weights sum to 1. As the class of hits is missing in the sum, we have to divide
each probability weight with factor 1 — P(class(R;)) (which represents the sum of probabilities for the misses’
classes). The process is repeated for m times, where m is a user-defined parameter.

Function dif f(A, I, I2) calculates the difference between the values of the attribute A for two instances Iy
and I>. For nominal attributes, it was originally defined as:

0; value(A, Iy) = value(A, I)

1; otherwise

dif f(A 11, I3) = {

For numerical attributes as:

. _ |value(A, I) — value(A, I)]
dif f(A I, I2) = maz(A) —min(A)

To deal with incomplete data, the diff function needs to be changed. Missing values of attributes are treated
probabilistically. We calculate the probability that two given instances have different values for given attribute
conditioned over class value:

— if one instance (eg., I1) has unknown value:

dif f(A, I, Is) = 1 — P(value(A, Is)|class(I1)) (1)

— if both instances have unknown value:

#values(A)

diff(A L) =1— > (P(Vldass(I1)) x P(Vl|class(I2))) (2)
14

Conditional probabilities are approximated with relative frequencies from the training set.
Algorithm ReliefF

Input: for each training instance a vector of attribute values and the class value
Output: the vector W of estimations of the qualities of attributes
1. set all weights W[A] := 0.0;
for ¢ := 1 to m do begin

randomly select an instance R;;

find k nearest hits H;;

for each class C # class(R;) do

from class C find k nearest misses M, (C);

for A:=1to ado
WIA] = WIA] = S, dif f(A, Ri, Hy) /(m - k)+
0 Zf’i;éclass(Ri) Z?:l dlff(A7 R;, MJ(C)]/<m : k)7
. end;
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Figure 2. Pseudo code of Relief algorithm



2.2. Naive Bayes classifiers

The naive Bayes classifiers assign the most likely class to a given example described by its feature vector. The
classifiers assume that the effect of an variable value on a given class is independent of the values of other variable.
This assumption is called class conditional independence. It is made to simplify the computation and in this sense
considered to be “naive. This assumption is a fairly strong assumption and is often not applicable. However, bias
in estimating probabilities often may not make a difference in practice — it is the order of the probabilities, not
their exact values, that determine the classifications. In practice the naive Bayes classifiers are often comparable
in performance with more sophisticated classifiers such as decision tree and neural network classifiers (Hilden,
1984; Langley, Iba, & thompson, 1992; Friedman, Geiger, & Goldszmidt, 1997; Domingos & Pazzani, 1997).
Naive Bayes has proven effective in many practical applications, including text classification, medical diagnosis,
and systems’ performance management (Domingos & Pazzani, 1997; Mitchell, 1997; Hellerstein, thathachar, &
Rish, 2000). They have also exhibited high accuracy and speed when applied to large databases.

Here a more technical description of the naive Bayes is given. Let X be the data record (case) whose class
label is unknown. Let H be some hypothesis, such as “data record X belongs to a specified class C.” For
classification, we want to determine P(H|X) — the probability that the hypothesis H holds, given the observed
data record X.

P(H|X) is the posterior probability of H conditioned on X. In contrast, P(H) is the prior probability, or a
priori probability of H. The posterior probability, P(H|X), is based on more information (such as background
knowledge) than the prior probability, P(H ), which is independent of X.

Similarly, P(X|H) is posterior probability of X conditioned on H. P(X) is the prior probability of X. Bayes
theorem is useful in that it provides a way of calculating the posterior probability, P(H|X), from P(H), P(X),
and P(X|H). Bayes theorem is

P(H|X) = P(X|H) x P(H)/P(X) (3)

3. DATA

The ROSAT Bright Source (BSC; Voges et al. 1999) contains positions, X-ray count rates, and spectral
information of 18,806 X-ray sources with count rates greater than 0.05 counts s !, observed during the ROSAT
All-Sky-Survey (RASS). Similarly, the ROSAT Faint Source (FSC) includes 10,5924 sources. A catalogue of
quasars and active nuclei (Véron-Cetty & Véron, 2000) contains 13214 quasars, 462 BL Lac objects and 4428
active galaxies (of which 1711 are Seyfert 1).

We positionally cross-identify the Véron 2000 catalog with the ROSAT Bright Source Catalog (RASS/BSC)
and Faint Source Catalog (RASS/FSC) X-ray sources, and then cross-identify the result with optical sources
in the USNO A-2.0 catalog. Similarly, using these sources to positionally cross-match 2MASS released data,
we cross out the one-to-many sources and get 909 quasars, 135 BL Lacs and 612 active galaxies. By the same
method, we adopt stars from SIMBAD and galaxies from Third Reference Catalogue of Bright Galaxies (RC3;
de Vaucouleursget et al. 1991) to obtain 3718 stars and 173 normal galaxies from optical, X-ray and infrared
bands. The chosen attributes from different bands are B — R (optical index), B + 2.5log(CR), lgCR (source
count-rate in the broad energy band), HR1 (hardness ratio 1), HR2 (hardness ratio 2), ext (source extent),
extl (likelihood of source extent), J — H (infrared index), H — K (infrared index), J + 2.5log(CR).

Wei et al. (1999) chose logC' > 0.4R + 4.9 as a criterion to preselect active galactic nucleus (AGN) samples,
where C is the X-ray count rate and R is the R magnitude. According to the results of the Einstein Medium
Sensitivity Survey (EMSS; Stocke et al. 1991), the X-ray to optical flux ratio Fx/Fy, was found to be very
different for different classes of X-ray emitters. Motch et al. (1998) stated that for source classification, the
most interesting parameters are flux ratios in various energy bands, including the conventional X-ray hardness
ratios, Fx /F,p ratios, and optical colors. They also found that, although stars and AGNs have similar X-ray
colors, their mean X-ray-to-optical ratios are obviously quite different, and they are well separated in the HR1/2
versus Fx /Fope diagram. Cataclysmic variables exhibit a large range of X-ray colors and F'x /F,,; ratios and
can be somewhat confused with both AGNs and the most active part of the stellar population. However, the
addition of a B-V or U-B optical index would allow further distinguishing between these overlapping populations.



Pietsch et al. (1998) also used a conservative extent criterion as an indicator that the X-ray emission does not
originate from a nuclear source. As a result, based on the optical classification, X-ray characteristics such as
hardness ratios and the extent parameter, the infrared classification and so on (Stocke et al. 1991; Motch et al.
1998; Pietsch et al. 1998), the present investigation is plausible. For different classes of objects, the different
distributions of attributes are helpful to classify the objects.

4. RESULTS AND DISCUSSION
4.1. Results

We present the result of attribute estimation on the multi-wavelength data based on common description by
the 10 attributes. ReliefF separates the important attributes from unimportant ones. The attributes with more
values convey more information. The rank of importance of these attributes in sequence is B + 2.5log(CR),
J+2.5log(CR), B— R, HR2, H— K, ext, J— H, lgCR, HR1, extl. The estimation of these attributes is given
as follows:

B+2.5log(CR)  J+2.5log(CR) B-R HR2  HK
0.04207 0.03833 0.03230 0.01332 0.01011

ext J-H 1lgCR HR1 extl
0.00716 0.00317 0.00213 0.00185 0.00096

From the above result, it shows that B + 2.5log(CR), J + 2.5log(CR), B— R, HR2, H — K and ext are the
good attributes to carrying the most information to discriminate AGNs from stars and normal galaxies. The
rest attributes are less important. Though feature selection by ReliefF, we choose the good attributes as the
feature subset for classification. To check the performance of classification with the feature subset, we compare
two situations: with the feature subset and with the full set of features, as the input of the naive Bayes classifier,
respectively. Randomly dividing the sample into two sets: one for training set and another for test set, we use
the training set to train and get the naive Bayes classifier. After that, we employ the test set to evaluate the
performance of the classifier. The classification results are shown in Tables 1-2, separatively. The total accuracy
of the two situations is 97.9% and 97.0%, respectively.

Table 1. The classification result with the feature subset
classified [known— AGNs non-AGNs
AGNs 833 44
non-AGNs 14 1883
accuracy 98.3% 97.7%

In addition, the ReliefF algorithm assigns a weight (importance) to each feature. So we can use their
weights directly. Adding different weights to corresponding features, we randomly divide the sample to two
parts: one for training set and another for test set. Just like above steps, we get the naive classifier and give
the classification result in Table 3. The total accuracy add up to 97.6%.

4.2. Discussion

Facing various large sky surveys, we need improving efficiency of high-costly telescopes and developing au-
tomated and robust approaches to preselect AGN candidates or other source candidates. The naive Bayes



Table 2. The classification result with the full set of features
classified [known— AGNs non-AGNs
AGNs 798 74
non-AGNs 10 1892
accuracy 98.8% 96.2%

Table 3. The classification result with the weighted attributes
classified | known— AGNs non-AGNs
AGNs 794 21
non-AGNs 45 1914
accuracy 97.4% 97.7%

classifier based on RliefF algorithm gives high accuracy (higher than 97%) of classifying AGNs from stars and
normal galaxies with multi-wavelength data. So this method can be used for large sky survey, such as Chinese
LAMOST.

From the above classification result, we see that RliefF algorithm separates the important attributes from
unimportant ones. Tables 1-2 present that the classification result with feature subset selection by RliefF is
better than that without feature selection. Moreover the classification result with the weighted features is also
better than that with the unprocessed full set of features, as shown by Table 2 and Table 3. Obviously the
naive Bayes classifier based on RliefF shows better performance than that independent on RliefF. Consequently
ReliefF is an efficient and robust feature selection algorithm, meanwhile, is a good feature weighting approach.

For ReliefF algorithm, the goodness of a feature subset can be assessed only depending on the intrinsic
properties of the data. It ignores the induction algorithm to assess the merits of a feature subset and performs
the feature selection before applying the learning algorithm. Looking just at the data and considering the target
concept to be learned. The learning algorithm constructs the concept using the set of selected features, ignoring
the others. By removing or decreasing irrelevant information and redundant information, ReliefF algorithm
improves the performance of the naive Bayes classifier.

Feature extraction and feature selection are important steps before data mining. Feature extraction methods
include projection pursuit (see Friedman, 1987), factor analysis (see Kim and Mueller, 1978) and principal
component analysis (see Dunteman, 1989; Zhang, 2003a), etc. Feature selection methods include wrapper
approaches, filter approaches and embedded approaches, etc. The techniques are complementary in their goals:
feature selection leads to savings in measurement cost and the selected features retain their original physical
interpretation. On the other hand, the transformed features obtained by feature extraction techniques may
provide a better discriminatory ability than the best selected subset, but these features fail in retaining the
original physical interpretation and may not have a clear meaning. According to different tasks and demands,
we choose appropriate feature extraction, feature selection and feature weighting approaches.

Despite its unrealistic independence assumption, the naive Bayes classifier is surprisingly effective in classify
the multi-wavelength data since its classification decision may often be correct even if its probability estimates
are inaccurate. When data are preprocessed by ReliefF, the performance of naive Bayes classifier increases.
Obviously, a deeper understanding of data characteristics that affect the performance of naive Bayes is still
required.

5. CONCLUSION

In this paper, we proposed a novel automated classification method, the naive Bayes classifier based on ReliefF,
introduced an efficient way (ReliefF) of analyzing feature redundancy and assigning weight to features according



to the amount of information the features convey. The feature selection results are verified by applying the
naive Bayes classifier to data with and without feature selection, and with and without weighting features. Our
approach shows its efficiency and effectiveness in dealing with high dimensionality data for classification. With
the quantity, quality and complexity of data improving, more effective and efficient classification techniques are
required. The successful techniques may be used in all kinds of classification tasks, such as preselecting source
candidates and object classification, and also be used for other types of data, for example, photometric data
and spectral data. Our further work will extend the method to work on higher dimensionality, develop more
effective feature selection approaches, or combined the feature selection techniques with other classifiers. With
more classification schemes in practice, the data mining toolkits of virtual observatory will be enriched.
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