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ABSTRACT

The Large sky Area Multi-Object fibre Spectroscopic Telescope will yield 10 million spectra of a wide variety of
objects including QSOs, galaxies and stars. The data archive of one-dimensional spectra, which will be released
gradually during the survey, is expected to exceed 1 terabyte in size. This archive will enable astronomers to
explore the data interactively through a friendly user interface. Users will be able to access information related
to the original observations as well as spectral parameters computed by means of an automated data-reduction
pipeline. Data mining tools will enable detailed clustering, characterization and classification analyses. The
LAMOST data archive will be made publicly available in the standard data format for Virtual Observatories
and in a form that will be fully compatible with future Grid technologies.

Keywords: LAMOST, data mining, clustering, characterization, classification, VO

1. INTRODUCTION

Astronomers and engineers in China will complete a wide-field multi-fibre spectrographic telescope, the Large
sky Area Multi-Object fibre Spectroscopic Telescope (LAMOST) in the coming two years. The telescope will
be used to survey 1,000,000 QSOs, 10,000,000 galaxies and 1,000,000 stars. The size of the final data archive
of one-dimensional spectra will exceed 1 terabyte. Mining∗ of the LAMOST spectral archive is expected to be
useful for a wide variety of astronomical studies.

The LAMOST spectroscopic survey will target over ten million objects chosen from the SDSS photometric
survey, DSS-II and other catalogues such as FIRST and ROSAT. Many targets will be selected on the basis of
cross-identifications between more than one of the above catalogues. The spectroscopic survey will utilize 32
multi-fibre medium resolution (R=2000) spectrographs, with a total of 4000 optical fibres. The spectral coverage
of each spectrum will be from 3700 to 9000 Å.

The LAMOST data archive will be distributed in two main data sets: a spectroscopic catalogue and a set of
individual spectra. The former will contain positions, information related to the observations, other measured
parameters such as redshifts (or radial velocities), line intensities (or equivalent widths) and positions of identified
emission and absorption lines etc. The latter data set will comprise of one-dimensional spectra for one million
quasars, ten million galaxies and one million stars. Catalogue subsets may also be included, such as a narrow-line
quasar catalogue. The data sets and their expected sizes are listed in Table 1.

The LAMOST telescope will be situated at the National Astronomical Observatories’ (NAOC) Xinglong
station. Observational data from the telescope will be shipped on tapes to NAOC headquarters in Beijing, where
they will be reduced, analyzed and archived automatically by a pipeline.2 This pipeline will calibrate, process,
parameterize, and classify the data, prior to its publication in a public archive. The archive will provide reference
data for stars, galaxies and quasars in FITS format, and will also provide a variety of services including a flexible
user interface on the web, which will allow sophisticated queries within the database.

*contact: lal@lamost.bao.ac.cn; phone 86 (0)10-6484-1693; fax 86 (0)10-6487-8240
∗The concepts and methodologies of “data mining” and “knowledge discovery” in databases are already described in

many papers and books,1 and are summarized in Section 3 of the present paper.



Table 1. LAMOST data sets and their expected sizes

product records size

Spectroscopic catalogue:
Raw observational data - 40TB
Redshift catalog 107 20GB
Radial velocity catalogue 106 2GB
Observation log and file headers 106 10GB
Simplified catalogue 4 × 108 80GB

Individual spectra:
1D spectra 107 1TB

The database will support two main kinds of query. Firstly, there will be a simple user-friendly search tool
enabling one to retrieve data subsets based on search limits chosen by the user. For example, the user will be
able to search for all objects lying within a specified field on the sky, by entering positional limits interactively.
The interface will also permit interactive “advance” searches as well as interactive “refined” searches of data
subsets.

The second kind of query will give the user the option of supplying his/her search criteria in standard SQL3(a
widely used database language). Users will work using views rather than with heavily-indexed base tables. To
speed access, indices are helpful to manage those most frequently accessed attributes, and an SQL query will
automatically use those indices covering the most important attributes. Aided by different indices, users will be
able to retrieve observational information as well as spectral parameters computed automatically.

2. DATA MINING AND EXAMPLES

In addition to the query options mentioned in Section 2, mining tools are also indispensable in order to extract
novel information. The LAMOST software system will contain a spectra-based data miner of knowledge, which
incorporates data mining functions such as clustering, characterization, and classification.

Data mining (DM) has many alterative names, such as knowledge discovery in databases, knowledge ex-
traction, data archaeology, data dredging, information harvesting, business intelligence etc. In large scientific
databases, it can generally be separated into two subsets: event-based mining and relationship-based mining.4

In astronomy, event-based mining includes: (1) the use of existing physical models to locate known phenomena
of interest either spatially or temporally within a large database; (2) the use of pattern recognition and the
clustering properties of data to discover new astrophysical relationships relating to known phenomena; (3) the
use of predictive models for the observational parameters of astrophysical phenomena to predict the presence of
previously unseen events within large complex databases; and/or (4) the use of thresholds or trends to identify
transient or otherwise unique events, thereby revealing new phenomena.

Relationship-based mining on the other hand refers to searching for associations or correlations among a set
of items or objects in a database. For example, clustering techniques can be used to identify events that are
co-located within a multi-dimensional parameter space.

In this section, we focus on three concept of data mining: clustering, characterization and classification, and
give examples of mining algorithms relevant to solving a variety of astrophysical problems.

2.1. Clustering

Clustering divides a database into different groups. The goal of clustering is to find groups of objects that are
very different from one other. Unlike classification (see Subsection 3.3), one does not know a priori either which
objects one’s clusters will include or by which attributes the data will be clustered. Consequently, someone who



Figure 1. SDSS DR1 QSO spectra for more than 15,000 objects projected onto a 2-d PCA subspace. The x-axis is the
first principal component, PC1, while the y-axis is the second principal component, PC2. Each small asterisk in the figure
represents a projection of a spectrum. We found that most of the spectra were located within a spherical space. A quick
check revealed that most BLQs lie within the spherical space, while most NLQs (which are less numerous) lie outside it.
Using a K-mean algorithm, we altered the size of the spherical space in order to achieve an optimal separation between
BLQs and NLQs.

is knowledgeable in astronomy is needed in order to interpret the clusters. Often it is necessary to modify the
clustering by excluding some of the variables previously employed, because upon examination the user identifies
them as irrelevant or not meaningful. After the user finds clusters that segment his/her database meaningfully,
these clusters may then be used to classify the new data.

Some of the common algorithms used to perform clustering include5:
(1) partitioning-based algorithms, which enumerate various partitions and then score them by some criterion e.g.
K-means, K-medoids etc.;
(2) hierarchy-based algorithms, which create a hierarchical decomposition of the set of data (or objects) using
some criterion; and
(3) model-based algorithms, in which a model is hypothesized for each of the clusters.

Searching for special objects is one of the tasks of clustering. In Figure 1., we give an example of how a class
of special objects known as narrow-line quasars (NLQs) can be identified using a K-mean clustering algorithm.
Quasars are active galactic nuclei (AGN) in which two different regions of ionized gas can be distinguished: a
broad-line region (BLR) and a narrow-line region (NLR).6 While NLRs in Seyfert galaxies are already relatively
well studied, there are no comparable studies of NLRs in quasars.7 However, in this example, NLQs can easily
be separated from ordinary QSOs in principal component analysis (PCA) space†. In most definitions, QSOs are
luminous objects, which have broad emission lines superimposed on a non-thermal continuum. The full-width
half maxima (FWHM) of their emission lines often exceed 5000 km/s, except that in the cases of NLQs the
FWHMs are generally narrower than 1000km/s.

In the LAMOST archive, there will be 106 QSO spectra, including large numbers of NLQs amongst them.
†Principal Component Analysis (PCA)is widely used in astronomy. The basic goal in PCA is to reduce the dimensions

of the multi-parameter space defined by one’s data without loss of information.8 Such a reduction in dimensions has
important benefits, especially as projection onto a 2-d or 3-d subspace is often useful for visualizing the data.
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Figure 2. A projection of 1599 stellar spectra onto a 2-d PCA plane.
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Figure 3. The distribution of (X, Log10T ) in 3-d space.

However, it will be a simple matter to use an SQL query in order to search for those QSOs with narrow lines,
because the width of each identified spectral line will be given in the catalogue. Under the framework of the
united AGN model, we will need to compare statistically the spectra of NLQs with those of Seyfert galaxies, and
clustering analyses in PCA space is the best tool to do this.

2.2. Characterization

Data characterization is a summarization of general features of objects in target classes, and produces what is
called characteristic rules. The data relevant to a user-specified class are normally retrieved by a database query
and run through a summarization module to extract the essence of the data at different levels of abstraction.
For example, one may want to characterize the effective temperatures of stars in our archive and obtain the
temperature distribution within our Galaxy.

DM methods to estimate stellar parameters are different from traditional methods based on direct measure-
ment. We need not measure each stellar spectrum as we are interested is the temperature distribution. The
effective temperature of each star is just one point in such a distribution. Bailer-Jones9,10 have trained an
artificial neural network (ANN) to estimate stellar parameters. Soubiran et al.11 and Katz et al.12 on the other
hand, have established a template library containing 211 stellar spectra, and used cross-correlation techniques
to match their observations with their templates. Here we present a surface-fitting technique to estimate the
distribution function of stellar effective temperature.
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Figure 4. Left: The fitted cubic surface (X , Log10T ). Right: The isotherm T = 10P (x,y).

The data set we used in this study is a comprehensive library of synthetic stellar spectra from Lejeune et
al.,13 which is based on three original grids of model atmosphere spectra by Kurucz et al.,14 Fluks et al.,15

and Bessell et al.16,.17 First of all, the spectra in this data set were processed by means of a PCA, yielding
Figigure2, in which all 1599 spectra are projected onto a 2-d PCA plane. The data distribution in PCA space is
a locus X, and effective temperature T is the function of X: T = F (X). Thus, T is a surface in a 3-d space as
shown in Figure 3. By experimentation, we found that the following equations can fit the surface well.

T = 10P (x,y) (1)

Where P(x,y) is a polynomial of the form:

P (x, y) = 25.0069 − 1.80461x + 0.0525264x2 − 0.000450855x3 + 3.22394y − 0.181638xy

+0.00256156x2y + 0.173964y2 − 0.00434289xy2 + 0.00358684y3. (2)

The surface of effective temperature is shown in Figure 4.(left). Figure 4.(right) gives the isotherm of effective
temperature in a PCA plane. When an observational spectrum is projected onto this PCA space, we can judge
the effective temperature of the object in question. We are presently working on optimizing characterization
algorithms in order to obtain stellar parameters such as Teff , g, and [Fe/H].

2.3. Classification

Classification is also called “predictive data mining”, in that the aim is to identify the characteristics of group
in advance. This pattern can be used both to understand existing data as well as to predict how new instances
will behave.

For the LAMOST data archive, the data analysis pipeline will write the results of its automated spectral
classification directly to the spectroscopic catalogue. From the catalogue, users will be able to obtain the
classification result e.g. QSO, ordinary galaxy or star of a particular spectral type. For ordinary galaxies, the
pipeline will not classify them further, since several very different classification schemes exist. For example,
galaxy classifications can depend on strengths of lines, morphology, or some other objective method (e.g. ANN
or PCA).

Some groups have classified galaxy spectra according to line strength. For example, Castander et al.18

classified galaxies from the Coma Cluster into 5 classes depending on the positions of their Balmer breaks as
well as their Hα and Hβ lines. The classes they defined were absorption-line galaxies, post-starburst galaxies,
absorption-line dominated galaxies with emission lines, emission- and absorption-line galaxies, and emission-line
dominated galaxies. The MORPHS group (Dressler et al.19 and Poggianti et al.20) classified 10 distant clusters



of galaxies into 7 classes depending on [OII] and Hδ. There are other methods based on different lines, such
as those of Balogh et al.(1999),21 Tresse(1999) et al.,22 and Dessauges-Zavadsky(2000)23 etc., but space does
not permit us to list them all here. The LAMOST archive will include 107 galaxies, and there will therefore be
plenty of scope for experimenting with different line-based classification methods. We will provide easy access
to the catalogue including all identified lines.

Some authors have tried to establish a relationship between morphological type and spectral type, notably
Zaritsky et al..24 It will be difficult for LAMOST to pursue this line of study since the galaxies from LAMOST
are very distant and morphological information will not generally be available.

There are many authors trying to classify galaxy spectra based on objective PCA techniques. Castander
et al.18 have used such techniques to classify Coma galaxies into 4 classes using SDSS data; Folkes et al.25

have classified 2dF spectra into 6 classes; while Bromley et al.26 have classifed galaxies from the Las Campanas
redshift survey into 6 classes. By contrast, Slonim et al.27 have used the “information bottleneck” technique to
classify 2dF galaxies into 5 classes. Note that the SDSS already gives an “e-class” index (which is also from a
PCA) for each galaxy, indicating whether the galaxy is likely to be of early or late type. In the LAMOST data
set, we will also be able to include an indicator of this type.

More and more authors are realizing that the classification of galaxy spectra is a complex problem, and
should be based on evolutionary models. PEGASE (Projet d’Etude des Galaxies par Synthese Evolutive) is such
a spectrophotometric evolution model for starbursts and evolved galaxies of the Hubble sequence.28 The model
includes evolutionary tracks, stellar libraries, initial mass functions and star formation rates. When LAMOST
galaxy spectra have been obtained, we will be able to classify the data using PEGASE or other evolutionary
templates. This should also help to improve the evolutionary models themselves.

3. SUMMARY

An objective of LAMOST DM is to provide software tools that will also be useful for the development of China’s
Virtual Observatory (VO). All data mining functions will be encapsulated as VO tools, including various mining
algorithms. We are designing each function of the software as a form of command line for use in Unix/Linux
environments. When international VO standards are decided upon, all of these commands will be easy to
encapsulate. All of the software tools will then be available as free packages that can be downloaded and
installed on any Unix/Linux system. However, under the framework of Grid architecture, the software tools will
not need to be downloaded since they will be be automatically executable on any computer on the grid.

The LAMOST data set, including all its sub-catalogues and FITs files of 1-d spectra, will of course be another
important contribution to the VO. Eventually, all of the data will be converted to the chosen standard VO format.
Exploring data such as these through VOs is likely to offer many new interesting research directions and will
change astronomers research methods. Data mining offers great promise in helping scientists uncover patterns
hidden in large data sets. However, data mining tools need to be guided by users who understand the data, and
the general nature of the analytical methods involved.

The true relationship between LAMOST and the VO is in using data mining and knowledge discovery to
explore the LAMOST data. Building models is only one step in knowledge discovery. It is vital to collect and
prepare the data carefully, as well as to check one’s models against actual phenomena. The “best” model is
often found after building models of several different types, or by trying different technologies or algorithms.
Our mission is to choose the right data mining tools with the best basic capabilities, an interface that matches
the computer-skill levels of potential users, and features relevant to future directions in astronomical research.
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