China-VO 2020

Completion of BASS/DESI Imaging Surveys and Latest Data

邹虎(NAOC) & BASS collaboration team Xiamen, 2020.11.26

BATC and China-VO

- chmidt telescope (巡天)
 .multi-color survey: > .papers
 steroid survey: about .asteroids
 xoplanet monitoring: about .exoplanets
 upernova survey (.): ~.candidates/year
- Intarctic \ (南极中国之星):
 - xcm telescope array deg : > papers:
 - onitoring the ome site
 - ariable stars and transients
- □ .ok telescope (国际合作)
 - outh alactic ap u-band urvey urvey (): for and a -a.e.
 - eijing-rizona ky urvey (): ilot &

BASS Motivation

Dark Energy Spectroscopic Instrument

- Stage-IV dark energy exploring experiment
- Supported by DOE/US
- Measuring redshift of 35 millions galaxies
- Mapping the 3D universe
- exploring the effect of dark energy on the expansion of the Universe

Motivation: DESI targeting

🔊 Focal Plane

Coude Room

10 spectrographs

Corrector

BOSS and eBOSS

DESI

DESI imaging surveys

Baseline footprint: 14000 deg2 D Photometric bands: g,r, and z bands **Depths:** g>24.0, r>23.4, z>22.5 90 BASS+MzLS 30 Gal 000 Plane **DECaLS** 90 DECaLS+ 240 270 -30 300 330 210 180 150 120 DES -60

DESI imaging surveys: collaborations

Survey features

- □ 2-3 magnitude deeper than SDSS
- "Open collaboration" includes non-DESI participants
- □ "Public surveys" no proprietary period on the data
- □ Pilot surveys in 2013, last photons in March 2019
- □ Adding infrared data of W1+W2 from WISE satellite (7-year
- stacks), 1.5 mag deeper than official WISE data

Survey observation and strategy

Data transferring

9

Data releases

	BASS DR3 (Aug. 2019) sky viewer	Survey footprint and tiling mode		
	BASS DR2 (Dec. 2017) sky viewer			
	BASS DR1 (Jan. 2017) sky viewer	Observation		
	BASS EDR (Dec. 2015)			
	BASS raw data MzLS raw data			
	retrieve raw data (Column description)			
		http://batc.bao.ac.cn/BASS		

Other data releases for Solution DESI legacy surveys, which also include the BASS data.

2020.12: DESI DR9, final targeting release

https://www.legacysurvey.org/

- Re-reductions of all data from raw imaging pixels
- Updated calibrations astrometry, flat-fields, PSFs, sky modeling
- Careful + consistent treatment faint sources near large galaxies + bright stars
- Includes 7 years of WISE infrared data (also reprocessed from raw pixels)
- Iterative detection of sources to recover faint targets near bright objects
- Improved morphologies for resolved galaxies (using Sersic profiles)

Interactive Map

Current Release: Data Release 8 July 2019 This was another 16 months work since DR8 Lots of testing wither interim releases dr9a, dr9b, dr9c,..., dr9m

- 20000 squared degrees, g,r,z,W1,W2
- □ 2-3 mag deeper than SDSS, 1.5 mag deeper than AllWISE
- Raw Data at NAOC and NOAO Archive
- Calibrated single-epoch images
- Stacked images
- **D** Co-added catalogs
- □ Force single-epoch catalogs
- Cross-matching with SDSS spec data
- Integrating Gaia data
- Attractive sky viewer

Sky viewer

Color images

14

DESI spectroscopic targets

Galaxy type	Redshift	Bands	Targets	Exposures	Good z 's	Baseline
	range	used	$per deg^2$	$per deg^2$	$\mathrm{per} \mathrm{deg}^2$	sample
LRG	0.4-1.0	r,z,W1	350	580	285	4.0 M
ELG	0.6 - 1.6	$_{g,r,z}$	2400	1870	1220	17.1 M
QSO (tracers)	< 2.1	g,r,z,W1,W2	170	170	120	1.7 M
QSO (Ly- α)	> 2.1	g,r,z,W1,W2	90	250	50	0.7 M
Total in dark time			3010	2870	1675	23.6 M
BGS	0.05 - 0.4	r	700	700	700	9.8 M
Total in bright time			700	700	700	9.8 M

- Luminous Red galaxy (LRG)
- **D** Emission line galaxies (ELG)
- Quasars (QSO)
- Bright Galaxy Sample (BGS)

Optical images of special objects and candidates

1: 10514-9102

Find merging galaxies in MaNGA samples Song-lin Li, et al. 2019

Optical images of supernova Ping Chen et al. 2020

Outlying H α emitters in MaNGA Bait Omkar et al. 2019

Confirming ultra-diffuse galaxies Dongdong Shi, et al. 2017

discover high-z quasars: Feige Wang et al. 2017,2018,2019

Scaling relations for galaxies

- Mass-Metallicity Relation and Fundamental Metallicity Relation of Metal-poor Star-forming Galaxies at 0.6 < Z < 0.9 (Gao et al. 2018)</p>
- □ The Mass-Metallicity Relation at z ~ 0.8: Redshift Evolution and Parameter Dependency (Huang et al. 2019)
- Photometric Redshifts and Stellar Masses for Galaxies from the DESI Legacy Imaging Surveys (Zou et al. 2019): for DR6+DR7 and DR8
- Stellar mass measurements based on grz+WISE

Photometric cluster detections

Halo-based group/cluster finders: Xiaohu Yang et al. 2020

A fast clustering algorithm to detect clusters: Hu Zou et al. 2020

Strong lenses

□ Strong lensing systems => dark matter

RESIDUAL NEURAL NETWORKS:

- X. Huang et al. 2020 (submitted)
- X. Huang et all. 2020, ApJ (335 candidatets)
- C.X. Wang et al. in preparation (in BASS region)

1210 new strong lens candidates

Lensed quasars

Figure 1. *Left*: BASS+MzLS colour cutout of SDSS J0909+4449. Three spectroscopically confirmed lensed quasar images are labelled as A, B, and C. Nearby galaxies that are potentially related to the lens are labelled accordingly. *Top right*: Gemini GMOS spectra of the three quasar images A (black), B (red), and C (blue). *Bottom right*: Ratios of B and C spectra with respect to A. (The green object north of G4 is a known asteroid 2015 TO103.)

A large-separation strongly lensed quasar at z \sim 2.8 with three images Yiping Shu et al. 2018

Tidal streams, MW satellites, low surface brightness objects

Time domain

u supernova/nova, proper motion, moving objects, and variable stars

BASS, MzLS, DECaLS collaborators

U.S. Department of Energy Office of Science

- **CEA/Saclay (France)** Christophe Yeche, Nathalie Palanque-Delabrouille
- □ Lawrence Livermore National Lab Eddie Schlafly
- Lawrence Berkeley National Lab David Schlegel, Michael Levi, Martin Landriau, Rongpu Zhou, Peter Nugent, Armin Karcher, Chris Bebek, Kaylan Burleigh, Mark Zhang
- NAOC/CAS Beijing Hu Zou, Xu Zhou, Tianmeng Zheng, Zhimin Zhou, Junden Nie, Xiyan Peng, Dongwei Fan, Boliang He, Zhaoji Jiang, Jun Ma, Jiali Wang
- NOIRLab Arjun Dey, Frank Valdes, David Herrera, Stephanie Juneau, Aaron Meisner, Ben Weaver, Alistair Walker, Robert Blum, David Sprayberry, Behzad Abareshi
- Ohio State University Klaus Honscheid, Hui Kong
- Peking University Linhua Jiang
- Perimeter Institute Dustin Lang
- Siena College John Moustakas
- Tsinghua University Shude Mao
- University of Arizona Xiaohui Fan, Michael Lesser, Dennis Zaritsky, Jinyi Yang, Ian McGreer
- □ University of Toronto Ray Carlberg
- University of Wyoming Adam Myers, Joe Findlay
- □ Yale University Charles Baltay, David Rabinowitz
- □ All observers and other collaborators

David Schlegel, DESI Research Forum, 12 Nov 2020

Upcoming Chinese Surveys

From Static to Dynamic

Ambitious Sitian Project (司天工程)

25

谢谢