R G ae N 217 #1F R 5L

o X
HEBAFEE R RS

* MTABEBERXSMNBITRIERSAR
o (T4 =M ERSE;
o N ARFAYIEZIT
o MM ARFAISEIN ;

* B B EMM By Oh/hAte) Bm e 2

\J

gz

i
il
=
el

H ;

E)?r
2B
by
|
e

=i
]|
X
ER
ﬁ{[«
)

N>

- M 55 AR

* HB R B iafr s hilgxet:
: (Kubanek et al. 2006, BOOTES)Fll H.25 i ;
- (Windows-based, Bl = 5):
- AST3Suite (Hu et al. 2016, Ma et al. 2020, & B E#);

- Auto-KLDIMM (Shang et al. 2018, Ma et al. 2020, 35 H %847
ast3suitefthid):

P A T B W 2R 255

* mArE OH PR AROE T 2R
* Gy FVE:

* X ,

* NI &E, TN AS & HHT B I EE
* A] FHPERIRS E E ;
* B EIMLERE (HfEER T NEFEITHHE) ;
* Bgefh;
* AR (ZEmEEhEIN, eg., AIRTI) ;

WL R Gie R B ERAE 750, HITHEEHE:
v EBAIPRA RS A R R 7
v RFEM R PR ;

V iR s B B s T g1

V' i Bt Uiz 17 /Y TR B

2 W R 5

© WL 22 GEAN 0L 25 B2 BE DI RE
> B AT FH N S e 1
© WL AR G A S BB A [A/ IR S A -

> G B R AL S S IIaT T IRE ;

> SR E FEREIRI . H B K DRE |

application

(GUIl-based
controlling program,
etc.)

system call

puewwod diseq

library routines

N -

-
5
b

SRR

T RKNZARS ;

ZA U FH RN 4 PRSP AL
W E X E R ER R (WU 0 E %D
FITES, EX:

Vi8N B HFITDEE ;

vV TR EREY ()

v 55 BUREAT N

vV 18 1R BAH BAEH

N EE TR E R G -84 E

® Creating a fil . Two steps are necessary to create a file. First, space in the
file system must be found for the file. We discuss how to allocate space for creat C)/Ope n C)

the file in Chapter 14. Second, an entry for the new file must be made in a
directory.

¢ Opening a fil . Rather than have all file operations specify a file name, . '—;‘ \I/'.
calljlsing gthe operating system to evaluate thpe name, chgck ayccess permis- Open() * ll"zl'j éz I:' % / l\ E Gl B e
sions, and so on, all operations except create and delete require a file 7K IN /J [J / N ‘/:E / ﬁ

open() first. If successful, the open call returns a file handle that is used as

an argument in the other calls
® Writing a fil . To write a file, we make a system call specifying both the Wr"i. te() ‘I/
open file handle and the information to be written to the file. The system

must keep a write pointer to the location in the file where the next write
is to take place if it is sequential. The write pointer must be updated
whenever a write occurs.

* Reading a fil . To read from a file, we use a system call that specifies the r'ead()

file handle and where (in memory) the next block of the file should be » I:' NNy ﬁ » N i
put. Again, the system needs to keep a read pointer to the location in *):' _EE ' lFﬁ ;[‘I/ 5] >
the file where the next read is to take place, if sequential. Once the read /J [J

has taken place, the read pointer is updated. Because a process is usually

either reading from or writing to a file, the current operation location can
be kept as a per-process current-file-positio pointer. Both the read and l_l QZ: Dn
write operations use this same pointer, saving space and reducing system U 7I<

complexity.

® Repositioning within a file. The current-file-position pointer of the open 1see k()
file is repositioned to a given value. Repositioning within a file need not

involve any actual I/0O. This file operation is also known as a file seek.

® Deleting a fil . To delete a file, we search the directory for the named file. delete () [g Z\\. Jb »y h)
Having found the associated directory entry, we release all file space, so * [H I F' s »
that it can be reused by other files, and erase or mark as free the directory 7R I (J L jU K

entry. Note that some systems allow hard links —multiple names (direc-

tory entries) for the same file. In this case the actual file contents is not S Y
deleted until the last link is deleted. % %I] ﬁ% { tl: % ﬂ °
® Truncating a fil . The user may want to erase the contents of a file but t pancate() L-L b

keep its attributes. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged —except
for file length. The file can then be reset to length zero, and its file space
can be released.

from

N EE TR E R G -84 E

¢ Creating a fil . Two steps are necessary to create a file. First, space in the
file system must be found for the file. We discuss how to allocate space for creat C)/Ope n C)

the file in Chapter 14. Second, an entry for the new file must be made in a

directory.
® Opening a fil . Rather than have all file operations specify a file name, open()
causing the operating system to evaluate the name, check access permis-

sions, and so on, all operations except create and delete require a file
open() first. If successful, the open call returns a file handle that is used as
an argument in the other calls.

® Writing a fil . To write a file, we make a system call specifying both the wri te()

open file handle and the information to be written to the file. The system
must keep a write pointer to the location in the file where the next write
is to take place if it is sequential. The write pointer must be updated
whenever a write occurs.

* Reading a fil . To read from a file, we use a system call that specifies the read ()

file handle and where (in memory) the next block of the file should be
put. Again, the system needs to keep a read pointer to the location in
the file where the next read is to take place, if sequential. Once the read
has taken place, the read pointer is updated. Because a process is usually
either reading from or writing to a file, the current operation location can
be kept as a per-process current-file-positio pointer. Both the read and
write operations use this same pointer, saving space and reducing system
complexity.

® Repositioning within a file. The current-file-position pointer of the open 1see k()
file is repositioned to a given value. Repositioning within a file need not

involve any actual I/0O. This file operation is also known as a file seek.

® Deleting a fil . To delete a file, we search the directory for the named file. delete ()

Having found the associated directory entry, we release all file space, so
that it can be reused by other files, and erase or mark as free the directory
entry. Note that some systems allow hard links —multiple names (direc-
tory entries) for the same file. In this case the actual file contents is not
deleted until the last link is deleted.

® Truncating a fil . The user may want to erase the contents of a file but t r-anca-te(>
keep its attributes. Rather than forcing the user to delete the file and then

recreate it, this function allows all attributes to remain unchanged —except
for file length. The file can then be reset to length zero, and its file space
can be released.

from Operating System Concepts

N EE TR E R G -84 E

application programs

ﬁ”@ ¢ Creating a fil . Two steps are necessary to create a file. First, space in the cre at() /Op en()

file system must be found for the file. We discuss how to allocate space for

the file in Chapter 14. Second, an entry for the new file must be made in a

directory.
j:]- ® Opening a fil . Rather than have all file operations specify a file name, Open()
: causing the operating system to evaluate the name, check access permis-

sions, and so on, all operations except create and delete require a file

open’() first. If su’ccessful, the open call returns a file handle that is used as I O g I Cal fl I e SySte m

an argument in the other calls.

SA\| e Writing a fil . To write a file, we make a system call specifying both the wri te()

open file handle and the information to be written to the file. The system
must keep a write pointer to the location in the file where the next write
is to take place if it is sequential. The write pointer must be updated
whenever a write occurs.

)

i;'éﬂy ¢ Reading a fil . To read from a file, we use a system call that specifies the read ()

file-organization module

file handle and where (in memory) the next block of the file should be
put. Again, the system needs to keep a read pointer to the location in
the file where the next read is to take place, if sequential. Once the read
has taken place, the read pointer is updated. Because a process is usually
either reading from or writing to a file, the current operation location can
be kept as a per-process current-file-positio pointer. Both the read and
write operations use this same pointer, saving space and reducing system

complexity. b - f'
— N asic file system
=5 ZE11L ® Repositioning within a file. The current-file-position pointer of the open 1see k()
B file is repositioned to a given value. Repositioning within a file need not

involve any actual I/0O. This file operation is also known as a file seek.

ﬂﬂu B,% ® Deleting a fil . To delete a file, we search the directory for the named file. delete ()

Having found the associated directory entry, we release all file space, so
that it can be reused by other files, and erase or mark as free the directory
entry. Note that some systems allow hard links —multiple names (direc-

tory entries) for the same file. In this case the actual file contents is not I / O COntrOI

deleted until the last link is deleted.

“ [f];] * Truncating a fil . The user may want to erase the contents of a file but t r-anca-te()

keep its attributes. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged —except
for file length. The file can then be reset to length zero, and its file space
can be released.

from Operating System Concepts devices

* Init

ELRIIES,

B E
BTR
e slew

BB, statust
= ANE
H << /tt

A=, rawiER5BinREIEPIEMMS

i, XA BAFF4G0R
* MOove

==

EES Y A OE{EROE S

BiniRIELE 45
SRENE BRI LRNEITS . BTSN EEATEREY, BREUAES LFIETEIRMNRATIDEC, MRETEFRMIAS, statust
SENALICRETERSS TIFEER

statusig <
statusi§ L IHEER
rawfg§ <%
rawig§ LHEER MEIRBELAERIAT R . raw(MEEHFHEARBILER, T2EMEBRTRIRT,
=undefined behavior, rawig <L EriEH, rawiE LI UZIRIELS T AIUZIEES .
slewig<
slewig R IHEE NGB IR BIS VLN B, slewHiTidied, ZBinHEATFSLEWINGIRE; slewsiIhH{T5REE, TILEInE 2T aMEsRE, Z2EEnHEHLTFTRACKINGIA
. slewERITHZP A A GEEHEYslew. move, stop. park. go_homefg<3#Th, ZHAIslewiELHITIRBIZL R, slew BBV, slewiELEIEIER.
moveg <
movetg8 LHINEERIG Ein B AV RN IR ERRE @R ERN H RBEhiZERRTE, movelELHITEREFR, EimBELFMOVINGIRE; moveRlIhHIT5REE, TIREIRR ZBILFAMEIRES, 25,
ZREIRR AT TRACKINGIRZS ., moveERATIHIZP I A G4 EImove, slew. stop. park. go_home}g<#Thf, ZHBEIMovelELHITIRBIZ R, moveiEL BRIk, movelE L ZI8IER.
power_onig %
power_oniE S MIINEER B EIn BRI IREINEIR, power_oniELHITHING, EimRALTUNINITIALIZEDIRS., B2, MRBFEELZITH, B ITpower_oniELAST=HEAMR. power_onig
ESEIRIES . S tO p
TRINEEIRELFPOWER_OFFIRE ., power_offiE< 2%
UL BERUHATES » park
ELEMIMN, NtIESERES.

e park oft

=P =]

LX), power_on}
power_offi§ S HINEER X BRI EIRFNEIE, MRBIREELZXH, B/ Tpower of iIERASFT=EEAIME., power_offig<
B EIRIER.
IR BINVBRML. initlEELHITRING, BiniRLTPARKEDRPRS ., MIREBIZBRELBINNGBNL, ZERITINHESAESTEEMARR, inith
S. parkiELE

power_off{§ <
BEinHREEBEGATUNINITIALIZEDRPRTS, XEN—MBEXNEHATEN. VRCHNREBIRTEANERREY, FIENRIER, @EFRMESgNE. SisitELR, ERREINESEFSFER.
WA, parkiELBIRIEZR .

., power_offf§< 2
WNREITEE Z B4 FMOVING, SLEWINGE),

o status

S, ZIEEiniRETFPARKEDIR

0Ny

initfg <
BEEST
TILEin R Z R FRIMIaahik
ZEEnHEATFTRACKINGIRES
<.

10N

=2

initfE <L AYLN
17585,
10Ny

park{g§<
parkiERINEER I EInREREHAME., parkINH
WNREiniR Z A FPARKEDIR

TR,
EORMWIES.

7Z){E1lEmovefllslew, ZEEiniHEALTFTRACKINGIR
B RIER.

park_off{§ <%
park_off{§ S HIIHEE G B in R IGHIE IR B N IRIFET . park I
TRACKINGIRZ, HiTparkiELAT=EEMUR, park_offfEL WA, park_offfE<LE
175eEE, MREBIZE ZaIFMOVINGHISLEWINGIRT,
BRI, stopiELE
S go_homefEHITIIFEH A BAME R 425 fYgo_home. slew,
@
o0 0

stop}E<
S, ZIEEBinEELTFPARKEDIA

17585, LB ImBRE 2T RMIEINIRE,
ELE0IEM, go_homeiEL 218IEL.

1']'77:—!—,
HYXE

stopiE R INEE R BRI TS B RGN ENIRIFEL, stopIiH
BIFPARKIRE, ZRERFBATTARCKINGIRES; WMREZFEZAIATTRACKINGIRZS, H1TstopiELAT=H(EAUR, stop?
BERREEEFEEXNNUEGEEEZUE., MAEXNUENYHEEnREERENBEIEENEZSUE, WREETN, EXMIE FTXxAMEZEXFETR, go_home

go_home$g<
Lﬁ.g% N\

go_homefg <IN

A TSR, BEinEATFSLEWINGIRE; go_homeRiIhH

move, stop. parkig<FTHI, ZAIgo_hometESLHITIRAIZR., go_homet
http://wiki.kunlunstation.org

R GEH RN 2 PR EUPR HEAL
E BB A (WA
. A X

VIR A D) D RE

Y UTIREIRE (FA)

v BURETTN (RRF)

vV 18 1R BAH BAEH

s 1]

schedule l» » exposure » grag

iImages

istri SNV
» distribute B =i 30

images TR

slew

0 slewfg & #7758 BUa BEWRE T 4
O slewHf TP TRING B4 I)p?

0 FEslew i e H i 21 K] 7'7%—&))? A T B 245 1E R o
B, HmBEIT AT A

ZA U FH RN 4 PRSP AL
X RS0 (WU N E R
B HES, X

VIR f AP ZIRE ;

vV TR EREY ()
v BURTT N (RRF)

v 38 IR A AR A

Z 5t 18 A E s ZbR THEAL

POWERED OFF

Power Off

o
-

J9MO(

UNINITIALIZED

PARKED

Y- ;
U E
oo
oS &% :

IR EHEBEERIIRSEZE

* ZL..%EE/ \&ﬂ:ﬁ BE%C
E El/g’lj(ui\ 5

" AT
Wtﬁ JZE‘.%REI/J’U(JLJ\ 5

(B Ol

* € XAa<EIAH HAEH
{%ﬂEvﬁ E%REI/J’HVL»
U

FLTIH BAR S N A%
e

B

» o —-
I LI .
¥H ;

ol
)

AR5 an/%5 Fim (C/S) 2R

- EE TR MBS

ARG gfEiES (C/C++, Rust?Go?) ;

T [XY AR A e XA (NAZSEEL)

W 2R G B 22 B): AAOS (developing)

v B AAOS M
v AAOS

h adt_r.h M ﬁ JEmRES
¢ adt.c M . 4> ﬁtﬂ J$:
h adt.h
h daemon_r.h
¢ daemon.c O »
o T 1] ol 22 s
h net_r.h X $?
c t.c M
h net.h
h object_r.h M D N éé}kﬁj:}% :I_-:*/j .
¢ object.c M O éiﬁﬂzﬁ ﬁ élil A b
h M

IE T o LR AR

pc_r.h
C pc.c
h pc.h
h serial_r.h
¢ serial.
serial.h
serial_rpc_r.h
serial_rpc
serial_rpc
telescope_
h telescope_
telescope.c
telescope.h
telescope_r
telescope_r
h telescope_r

< = = = = =

= =

B ARG DR -
O HITiks;
O ﬁ@‘&%lﬁ?%au,

O Himpikss (BIIEHimEs, AstroPhysics
IniEAL, ASCOM Alpaca)

AAOSEZHslewl)]gE

application programs - telescope_slew(void *telescope, double ra, double dec)
u library function

logical file system

!

file-organization module

ﬂ “driver”

basic file system - rpc_call(void *rpc) =P rpc_process(void *rpc)

uonoNISul JIIUAI
0} dje[sueI)

system call
real device driver “:Sr xxx#:Sd xxx#:MS#”
/O control I <cridl_raw(void *rpc)
u library function

devices

H 3l Rk G W17 RS EAE R G H A AL,
RIEVERBGIXTT

RGN EAL I I 2R Gepit 5 i Y e o R BB R
H BRI T W28 B C/SH R R

