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- Auto-KLDIMM (Shang et al. 2018, Ma et al. 2020, 35 H %847
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P A T B W 2R 255

* mArE OH PR AROE T 2R
* Gy FVE:

* X ,

* NI &E, TN AS & HHT B I EE
* A] FHPERIRS E E ;
* B EIMLERE (HfEER T NEFEITHHE) ;
* Bgefh;
* AR (ZEmEEhEIN, eg., AIRTI) ;




WL R Gie R B ERAE 750, HITHEEHE:
v EBAIPRA RS A R R 7
v RFEM R PR ;

V iR s B B s T g1

V' i Bt Uiz 17 /Y TR B



2 W R 5

© WL 22 GEAN 0L 25 B2 BE DI RE
> B AT FH N S e 1
© WL AR G A S BB A [ A/ IR S A -

> G B R AL S S IIaT T IRE ;

> SR E FEREIRI . H B K DRE |



application

(GUIl-based
controlling program,
etc.)

system call

puewwod diseq

library routines

N -

-
5
b

SRR

T RKNZARS ;




ZA U FH RN 4 PRSP AL
W E X E R ER R (WU 0 E %D
FITES, EX:

Vi8N B HFITDEE ;

vV TR EREY ()

v 55 BUREAT N

vV 18 1R BAH BAEH



N EE TR E R G -84 E

® Creating a fil . Two steps are necessary to create a file. First, space in the
file system must be found for the file. We discuss how to allocate space for creat C )/Ope n C)

the file in Chapter 14. Second, an entry for the new file must be made in a
directory.

¢ Opening a fil . Rather than have all file operations specify a file name, . '—;‘ \I/'.
calljlsing gthe operating system to evaluate thpe name, chgck ayccess permis- Open() * ll"zl'j éz I:' % / l\ E Gl B e
sions, and so on, all operations except create and delete require a file 7K IN /J [J / N ‘/:E / ﬁ

open() first. If successful, the open call returns a file handle that is used as

an argument in the other calls
® Writing a fil . To write a file, we make a system call specifying both the Wr"i. te() ‘I/
open file handle and the information to be written to the file. The system

must keep a write pointer to the location in the file where the next write
is to take place if it is sequential. The write pointer must be updated
whenever a write occurs.

* Reading a fil . To read from a file, we use a system call that specifies the r'ead()

file handle and where (in memory) the next block of the file should be » I:' NNy ﬁ » N i
put. Again, the system needs to keep a read pointer to the location in * ):' _EE ' lFﬁ ;[ ‘I/ 5] >
the file where the next read is to take place, if sequential. Once the read /J [J

has taken place, the read pointer is updated. Because a process is usually

either reading from or writing to a file, the current operation location can
be kept as a per-process current-file-positio pointer. Both the read and l_l QZ: Dn
write operations use this same pointer, saving space and reducing system U 7I<

complexity.

® Repositioning within a file. The current-file-position pointer of the open 1see k()
file is repositioned to a given value. Repositioning within a file need not

involve any actual I/0O. This file operation is also known as a file seek.

® Deleting a fil . To delete a file, we search the directory for the named file. delete () [ g Z\\. Jb »y h )
Having found the associated directory entry, we release all file space, so * [H I F' s »
that it can be reused by other files, and erase or mark as free the directory 7R I (J L jU K

entry. Note that some systems allow hard links —multiple names (direc-

tory entries) for the same file. In this case the actual file contents is not S Y
deleted until the last link is deleted. % %I] ﬁ% { tl: % ﬂ °
® Truncating a fil . The user may want to erase the contents of a file but t pancate() L-L b

keep its attributes. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged —except
for file length. The file can then be reset to length zero, and its file space
can be released.

from
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write operations use this same pointer, saving space and reducing system
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® Repositioning within a file. The current-file-position pointer of the open 1see k()
file is repositioned to a given value. Repositioning within a file need not

involve any actual I/0O. This file operation is also known as a file seek.

® Deleting a fil . To delete a file, we search the directory for the named file. delete ()

Having found the associated directory entry, we release all file space, so
that it can be reused by other files, and erase or mark as free the directory
entry. Note that some systems allow hard links —multiple names (direc-
tory entries) for the same file. In this case the actual file contents is not
deleted until the last link is deleted.

® Truncating a fil . The user may want to erase the contents of a file but t r-anca-te(>
keep its attributes. Rather than forcing the user to delete the file and then

recreate it, this function allows all attributes to remain unchanged —except
for file length. The file can then be reset to length zero, and its file space
can be released.

from Operating System Concepts
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application programs

ﬁ”@ ¢ Creating a fil . Two steps are necessary to create a file. First, space in the cre at() /Op en()

file system must be found for the file. We discuss how to allocate space for

the file in Chapter 14. Second, an entry for the new file must be made in a

directory.
j:]- ® Opening a fil . Rather than have all file operations specify a file name, Open()
: causing the operating system to evaluate the name, check access permis-

sions, and so on, all operations except create and delete require a file

open’() first. If su’ccessful, the open call returns a file handle that is used as I O g I Cal fl I e SySte m

an argument in the other calls.

SA\| e Writing a fil . To write a file, we make a system call specifying both the wri te()

open file handle and the information to be written to the file. The system
must keep a write pointer to the location in the file where the next write
is to take place if it is sequential. The write pointer must be updated
whenever a write occurs.

)

i;'éﬂy ¢ Reading a fil . To read from a file, we use a system call that specifies the read ()

file-organization module

file handle and where (in memory) the next block of the file should be
put. Again, the system needs to keep a read pointer to the location in
the file where the next read is to take place, if sequential. Once the read
has taken place, the read pointer is updated. Because a process is usually
either reading from or writing to a file, the current operation location can
be kept as a per-process current-file-positio pointer. Both the read and
write operations use this same pointer, saving space and reducing system

complexity. b - f'
— N asic file system
=5 ZE11L ® Repositioning within a file. The current-file-position pointer of the open 1see k()
B file is repositioned to a given value. Repositioning within a file need not

involve any actual I/0O. This file operation is also known as a file seek.

ﬂﬂu B,% ® Deleting a fil . To delete a file, we search the directory for the named file. delete ()

Having found the associated directory entry, we release all file space, so
that it can be reused by other files, and erase or mark as free the directory
entry. Note that some systems allow hard links —multiple names (direc-

tory entries) for the same file. In this case the actual file contents is not I / O COntrOI

deleted until the last link is deleted.

“ [f];] * Truncating a fil . The user may want to erase the contents of a file but t r-anca-te()

keep its attributes. Rather than forcing the user to delete the file and then
recreate it, this function allows all attributes to remain unchanged —except
for file length. The file can then be reset to length zero, and its file space
can be released.
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application programs - telescope_slew(void *telescope, double ra, double dec)
u library function

logical file system

!

file-organization module

ﬂ “driver”

basic file system - rpc_call(void *rpc) =P rpc_process(void *rpc)
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system call
real device driver “:Sr xxx#:Sd xxx#:MS#”
/O control I <cridl_raw(void *rpc)
u library function

devices
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