大数据时代里强引力透镜系统的自动化分析

.黑龙江, 大庆, 2019/11/29

Simon Dye (UoN), James Pearson (UoN) Francois Lanusse (Berkeley), Steve Rangel (ANL) Lindsey Bleem (ANL), Mike Gladders (Uchicago) Katrin Heitmann (ANL), Salman Habib (ANL) Camille Avestruz (MichiganU), Michael Florian (NASA) Ting-yun Cheng (UoN), Chris Conselice (UoN), etc.

Introduction

Machine Learning and Lens Finding

Machine Learning and Lens Modeling

Galaxy Cluster Abell 2218 NASA, A. Fruchter and ERO Team (STScI) · STScI-PRC00-08

Applications of Gravitational Lensing

- Test the theory of GR - Geometry of the space Artwork by Dave Jarvis Mass distribution of lensesDark matter substructures

Structure Formation History
Cosmological Parameters

Celestial Pole

Tens of Thousands Strong Lenses from Tens of Billions of Objects

Credits: LSST OpSim Group

http://www.mobactu.fr/wp-content/uploads/Face-detection.png

0.9

1000

0.99

Introduction

Machine Learning and Lens Finding

Machine Learning and Lens Modeling

Simulations of Gravitational Lensing (PICS)

Traditional Machine Learning and Lens Finding

Avestruz, Li et al. 2019

Deep Learning and Lens Finding

Lanusse, Ma, Li et al. 2017

Traditional Machine Learning VS. Deep Learning

Avestruz, Li et al. 2019 & Lanusse, Ma, Li et al. 2017

Gravitational Lens Finding Challenge V1.0

Introduction

Finding strong gravitational lenses in the current imaging surveys is difficult. Future surveys will have orders of magnitude more data and more lenses to find. It will become impossible for a single human being to find them by inspection. In addition, to properly interpret the science coming out of strong lens samples it is necessary to accurately quantify the detection efficiency and bias of automated lens detectors. These open challenges are designed as a friendly way of stimulating activity and helping to quantify results in this regard.

People

~! !

http://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html

Sorted by area under the ROC curve

##		Team_name_submit	type	AUROC	TPRO	TPR10	description_short	author.1
##	14	resnet_ground_7bf8089	Ground-Based	0.9814321	8.993713e-02	0.4534297041	CNM	Francois Lanusse
##	10	CMU-DeepLens-Resnet-Voting	Ground-Based	0.9804913	2.445130e-02	0.1027314963	CNN	Quanbin Ma
##	20	LASTRO EPFL (11i)	Ground-Based	0.9749255	7.493794e-02	0.1131977256	CNM	Mario Geiger
##	3	cas_convnet_mean	Ground-Based	0.9634215	2.022629e-02	0.0761790327	CNM	Colin Jacobs
##	22	Ground	Ground-Based	0.9557059	0.000000e+00	0.0071018193	CNM	Emmanuel Bertin
##	23	Ground	Ground-Based	0.9557059	0.00000e+00	0.0071018193	CNM	Emmanuel Bertin
##	24	Ground_fixed	Ground-Based	0.9557059	0.000000e+00	0.0071018193	CNM	Emmanuel Bertin
##	25	Ground_fixed	Ground-Based	0.9557059	0.000000e+00	0.0071018193	CNM	Emmanuel Bertin
##	9	Philippa Hartley2	Ground-Based	0.9310191	2.237273e-01	0.3453159911	SVM / Gabor	Philippa Hartley
##	7	Philippa Hartley	Ground-Based	0.9293543	2.123763e-01	0.3316908714	SVM / Gabor	Philippa Hartley
##	27	Manchester-NA2	Ground-Based	0.8913778	2.803645e-04	0.0075297887	Human Inspection	n Neal Jackson
##	28	Manchester-NA2	Ground-Based	0.8913778	2.803645e-04	0.0075297887	Human Inspection	n Neal Jackson
##	29	Manchester-NA2-Submission2	Ground-Based	0.8913778	2.803645e-04	0.0075297887	Human Inspection	n Neal Jackson
##	30	Manchester-NA2-Submission2	Ground-Based	0.8913778	2.803645e-04	0.0075297887	Human Inspection	Neal Jackson
##	4	All-star	Ground-Based	0.8365358	7.181615e-03	0.0186123524	edges/gradiants and Logistic Reg.	Camille Avestruz
##	13	CAST-GB	Ground-Based	0.8347916	2.005535e-05	0.0003810517	CNN / SVM	I Clecio Roque De Bom
##	31	YattaLensLite	Ground-Based	0.8191702	2.194382e-04	0.0021145867	SExtractor	Alessandro Sonnenfeld
##	16	LASTRO EPFL (13b)	Space-Based	0.9325338	4.773626e-03	0.0779692201	CNN	Mario Geiger
##	8	resnet_5d0aad0	Space-Based	0.9225303	2.206807e-01	0.2904204271	CNN	Francois Lanusse
##	15	GAMOCLASS	Space-Based	0.9210117	7.416406e-02	0.3570444584	DL / CNN	Marc Huertas-Company
##	6	CMU-DeepLens-Resnet-Voting	Space-Based	0.9145407	0.00000e+00	0.0082046692	CNN	Quanbin Ma
##	1	space	Space-Based	0.9143197	6.755404e-04	0.0127852282	CNN	Emmanuel Bertin
##	19	res_bottleneck_87b7e8a	Space-Based	0.9068996	7.506005e-05	0.0038030424	CNN	Eric Ma
##	32	CNN_kapteyn	Space-Based	0.8179482	1.000625e-04	0.0002001251	CNN	Enrico Petrillo
##	21	CAST-SB	Space-Based	0.8128851	6.909326e-02	0.1186942145	CNN	I Clecio Roque De Bom
##	5	Manchester1	Space-Based	0.8101726	7.354597e-03	0.1739837398	Human Inspection	Neal Jackson
##	18	Philippa Hartley2	Space-Based	0.8092423	2.859788e-02	0.0812650120	SVM / Gabor	Philippa Hartley
##	17	Philippa Hartley	Space-Based	0.8012731	2.934848e-02	0.0717323859	SVM / Gabor	Philippa Hartley
##	12	Attempt2	Space-Based	0.7626792	0.00000e+00	0.0008265498	CNN / wavelets	Andrew Davies
##	11	YattaLensLite	Space-Based	0.7622929	0.000000e+00	0.0003502802	Arcs / SExtractor	Alessandro Sonnenfeld
##	26	All-now	Space-Based	0.7346352	4.900040e-02	0.0659031545	edges/gradiants and Logistic Reg.	Camille Avestruz
##	2	GAHEC IRAP 1	Space-Based	0.6580909	1.127113e-03	0.0090920476	arc finder	R Cabanac
								ican et al. 2019

Unsupervised Learning and Lens-finding

Name	Author	AUC	TPR_0	TPR_{10}	short description
LASTRO EPFL	Geiger, Schäfer & Kneib	0.93	0.00	0.08	CNN
CMU-DeepLens-Resnet	Francois Lanusse, Ma,	0.92	0.22	0.29	CNN
	C. Li & Ravanbakhsh				
GAMOCLASS	Huertas-Company, Tuccillo,	0.92	0.07	0.36	CNN
	Velasco-Forero & Decencière				
CMU-DeepLens-Resnet-Voting	Ma, Lanusse & C. Li	0.91	0.00	0.01	CNN
AstrOmatic	Bertin	0.91	0.00	0.01	CNN
CMU-DeepLens-Resnet-aug	Ma, Lanusse, Ravanbakhsh	0.91	0.00	0.00	CNN
	& C. Li				
*Unsupervised technique	This Work (Training, Fig. 8)	0.87	0.08	0.08	Deep Clustering
**Unsupervised technique	This Work (Section 4.2.3)	0.83	0.00	0.00	Deep Clustering
Kapteyn Resnet	Petrillo, Tortora, Kleijn,	0.82	0.00	0.00	CNN
	Koopmans & Vernardos				
CAST	Bom, Valentín & Makler	0.81	0.07	0.12	CNN
Manchester1	Jackson & Tagore	0.81	0.01	0.17	Human Inspection
Manchester SVM	Hartley & Flamary	0.81	0.03	0.08	SVM / Gabor
NeuralNet2	Davies & Serjeant	0.76	0.00	0.00	CNN / wavelets
YattaLensLite	Sonnenfeld	0.76	0.00	0.00	Arcs / SExtractor
All-now	Avestruz, N. Li & Lightman	0.73	0.05	0.07	edges/gradiants and Logistic Reg.
Unsupervised technique	This Work (Section 4.2.3)	0.72	0.00	0.00	Deep Clustering
GAHEC IRAP	Cabanac	0.66	0.00	0.01	arc finder

Cluster 18: lensing: 1.0 non: 0.0	Cluster 13: lensing: 1.0 non: 0.0	Cluster 3: lensing: 1.0 non: 0.0	Cluster 5: lensing: 1.0 non: 0.0	Cluster 16: lensing: 1.0 non: 0.0	Cluster 1: lensing: 1.0 non: 0.0	Cluster 14: lensing: 1.0 non: 0.0	Cluster 6: lensing: 1.0 non: 0.0	Cluster 17: lensing: 1.0 non: 0.0	Cluster 15: lensing: 1.0 non: 0.0
,	٠	•	,		0	\odot	(-		\rightarrow
		8	,	4	\odot)	
•	•	`)	ć	1	С,	, . `	۰,	\bigcirc
-	÷	^o	,	ł.	C	с.	,	,	C
-		,	1			0		.)	
	her	na. I	Li e	t al.	. a	rXiv	/: 1	911.	.0432

Introduction

Machine Learning and Lens Finding

Machine Learning and Lens Modeling

Machine Learning and Lens Modeling

Deep Learning and Lens Modeling

• Parameter Fitting techniques (e.g. Warren & Dye 2003, Nightingale, Dye & Massey 2018)

CNNs (Hezaveh et al. 2017) -> Speed up of ~7 orders of magnitude!

Created my own CNN to investigate:

the efficiency when applied to LSST- and Euclid-like images
how accuracy is affected by:

- the presence of the foreground lens light
- the assumed mass-light alignment
- the use of **multi-band** imaging
- the use of **stacked** images

Switching to *multi-band* imaging decreased errors by 18-20%. *Removing lens light* decreased errors by 26±12%.

When training a neural network, mass-light alignment *must be* taken into account. *Removing lens light can get rid of the influences.*

Pearson, Li, Dye 2019

Introduction

Machine Learning and Lens Finding

Machine Learning and Lens Modeling

Outlook

Detecting

Predicting

5,000 light-years

Fitting

Backup Slides

https://colab.research.google.com/drive/17zCysoAc weipj6P37TygZOVwMtu5HITt

Faster RCNN

How to detect specific objects without cutting out stamps from the field of view?

https://github.com/rbgirshick/py-faster-rcnn

Ground: Subaru (8m)

Space: HST (2.4m)

How to Generate Realistic Galaxy Images using GANs? https://github.com/tycheng-sunny/VQ-VAE-for-emulating-galaxy-images

Semi-supervised Learning and Lens-finding

SNTG ResNet50 ROC for ground based data

• • • • nilesxu/SSLDeepLens: Deep	Ler × +		
\leftarrow \rightarrow C $($ a github.com/milesxu/	SSLDeepLens		☆ 🔮 :
Search or jump to	7 Pull requests Issue	es Marketplace Explore	≜ +• Ω •
🖟 milesxu / SSLDeepLens 😑		O Unwatch → 2	★ Unstar 3 ¥ Fork 0
Code Issues Pull requ	uests 0 Z ZenHub III Projects	0 🖽 Wiki 🕕 Security 🔟 Insigh	its
Deep Lens with SSL			
	2. 		80 0
T 129 commits	P 5 branches	♥ 0 releases	2 contributors
Branch: master - New pull request		Create new file Upload files	s Find file Clone or download -
milesxu change args			Latest commit 4f1880b on Sep 25
ipynb_checkpoints	add plot and save plot		7 months ago
.vscode	add transform, delete keras		10 months ago
i _pycache_	initial version of training code		11 months ago
in notebooks	move some files		6 months ago
static/lens-app	6 months ago		
j .gitignore	add test function		6 months ago
compose_class.py	update the fuction for creating pngs		4 months ago
data_transforms.py	add comments		4 months ago
🖹 ema.py	add ema correct		10 months ago
generate_rgb.py	add comments		4 months ago
E generate roc curve py	- h		Sign in now to use Zenklub as
E generate_roc_curve.py	change args		Sign in now to use zennub go

https://github.com/milesxu/SSLDeepLens

simulations of strongly lensed supernovae

Simulations of weak lensing

z = 0.503

 $M = 2.703 \times 10^{14} \mathrm{M}_{\odot} h^{-1}$

Credit: N.

Histogram of Oriented Gradients (HOG)

Optimal Model^{Set}

Accuracy

Training

Validation

Set

Architecture of CMU DeepLens

The first block is a single convolutional layer with an ELU activation function and batch normalisation. The last block is a single fully connected layer with a sigmoid activation function, which outputs a probability between 0 and 1.

Lanusse, Ma, Li et al. 2017

Introduction

Machine Learning and Lens Finding

Machine Learning and Lens Modeling

Potential Applications of Machine Learning in Astrophysics

Increasing network depth leads to worse performance

Lanusse, Ma, Li et. al. 2017

The building blocks of a residual network architecture.

- Left: Undecimated ResNet-16-32 unit, preserving the size and depth of the input.
- Right : ResNet-32-64,/2 unit simultaneously increasing the depth of the output (from 32 channels to 64) and downsampling by a factor 2 its resolution.

Lanusse, Ma, Li et. al. 2017 The building blocks of a residual network architecture.

- Left: Undecimated ResNet-16-32 unit, preserving the size and depth of the input.
- Right : ResNet-32-64,/2 unit simultaneously increasing the depth of the output (from 32 channels to 64) and downsampling by a factor 2 its resolution.