# GPU在天文中的应用

#### 三峡大学/国家天文台 田海俊

2012年11月30日

### **GPU的发展**



### GPU计算能力和数据传输能力

### CUDA GPU & PCI-E Roadmap

| CU                                                                 | DA GP  | U Roadmap             |             |    | CT | 4    | ω     | N    | <u>m</u> |
|--------------------------------------------------------------------|--------|-----------------------|-------------|----|----|------|-------|------|----------|
| 16                                                                 |        |                       | Maxwell     |    |    |      |       |      | S        |
| 14                                                                 |        |                       | P3          |    |    |      |       |      | Ver      |
| <b>H</b> 12                                                        |        |                       | ×7.6        |    |    |      |       |      | sio      |
| MA 10                                                              |        |                       |             |    |    |      |       |      | 3        |
| s per                                                              | ×2.7   |                       |             |    |    |      |       |      |          |
| °,                                                                 | Kepler |                       |             |    |    | 2015 | 2011- | 2007 | Ū        |
| P GF                                                               |        |                       |             |    |    |      |       |      | ĝ        |
| <u> </u>                                                           |        | Fermi                 |             |    | 22 | 2    | ò     |      | č        |
| 2                                                                  | Tesla  | 1                     |             |    |    |      |       |      | ed       |
|                                                                    |        |                       |             |    |    |      |       |      | rel      |
|                                                                    | 2007   | 2009                  | 2011 2013   |    |    |      |       |      | eas      |
| GPGPL                                                              | J card | Expected release year | Performance | _  |    |      |       |      | õ        |
| Fermi                                                              |        | 2009                  | 1.0×        |    |    |      |       |      | ye       |
| Kepler                                                             |        | 2011                  | 2.7×        |    |    |      |       |      | a l      |
| Maxwel                                                             | 11     | 2013                  | 7.6×        |    |    |      |       |      |          |
| ???                                                                |        | 2015                  | 15.2×       |    | D  | ω    | _     |      |          |
| ???                                                                |        | 2017                  | 30.4×       |    | 4  | Ñ    | 6     | 8    | ar       |
|                                                                    |        |                       |             |    | B  | B    | B     | B    | þ        |
| i.e. GPU cards may be expected to deliver 15-30 TFLOP by 2016-2018 |        |                       |             | 3. | S  | S    | S     | S    | vidtl    |
| Power dissipation expected to remain constant at 250W per card.    |        |                       |             |    |    |      |       |      | -        |
|                                                                    |        |                       |             |    |    |      |       |      |          |

### GPU技术在天文中的应用

 N体模拟:有助于研究行星系统、恒星凝聚、银河系的演化等(其他领域: 分子动力学、基本粒子散射模拟、交通道路模拟等);

• 射电干涉仪: FX/XF相关器.

 其他:引力透镜(Thompson2010, Bate2010)、地外行星搜寻 (Ford2009)、AMR加速(Schive2010)、尘埃温度计算(Jonsson2010)、再电离 模拟(Aubert2010),星系拟合(Barsdel12011)、引力波搜寻(Chung2010)、 天文数据的可视化(Hassan2011)、天文数据分类(彭南博2011、裴彤2010)

彭南博,张彦霞《科研信息化技术与应用》2011



计算由GPU完成,目前将尝试进一步利用GPU完善一套2PCF、nPCF等大尺度结构统计工具



#### Rafael2012(GPU application on 2pcf)

| Input file lines    | CPU (s)             | GTX295 (s)          | C1060 (s)           | C2050 (s)           | 100                                                                             | W_GPU-W_CPU Histogram               |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------------------------------------------------------------------|-------------------------------------|
| $0.43 \cdot 10^{6}$ | $3.60 \cdot 10^4$   | $3.01 \cdot 10^2$   | $2.91 \cdot 10^2$   | $2.19 \cdot 10^2$   |                                                                                 |                                     |
| $0.86 \cdot 10^{6}$ | $1.44 \cdot 10^{5}$ | $1.20 \cdot 10^{3}$ | $1.16 \cdot 10^{3}$ | $8.76 \cdot 10^2$   | 80                                                                              |                                     |
| $1.00 \cdot 10^{6}$ | $1.98 \cdot 10^{5}$ | $1.61 \cdot 10^{3}$ | $1.56 \cdot 10^{3}$ | $1.17 \cdot 10^{3}$ | s 60                                                                            |                                     |
| $1.29 \cdot 10^{6}$ | $3.24 \cdot 10^{5}$ | $2.68 \cdot 10^{3}$ | $2.59 \cdot 10^{3}$ | $1.97 \cdot 10^{3}$ | ad<br>ad<br>ad<br>ad<br>ad<br>ad<br>ad<br>ad<br>ad<br>ad<br>ad<br>ad<br>ad<br>a |                                     |
| $1.72 \cdot 10^{6}$ | $5.76 \cdot 10^{5}$ |                     | $4.64 \cdot 10^3$   | $3.51 \cdot 10^{3}$ |                                                                                 |                                     |
| $3.45 \cdot 10^{6}$ | $2.32 \cdot 10^6$   |                     | $1.88 \cdot 10^4$   | $1.41 \cdot 10^4$   | 20                                                                              |                                     |
| $6.89 \cdot 10^{6}$ | $9.22 \cdot 10^{6}$ |                     | $7.45 \cdot 10^4$   | $5.61 \cdot 10^4$   | -0.0003                                                                         | -0.0002 -0.0001 0.0000 0.0001 0.000 |

#### CPU和GPU执行时间对比

Optimizing the Computation of N-Point Correlations on Large-Scale Astronomical Data (Martch2012)

残差

# GPU应用(二)射电干涉仪的相关器





Percentages are the fraction of the theoretical peak performance for that architecture

#### Nieuwpoort2009

## GPU应用(二)射电干涉仪的相关器



| Parameters    | Phase I    | Phase II    |
|---------------|------------|-------------|
| N(antenna)    | 96         | 1000        |
| N(pole)       | 2          | 2           |
| N(baseline)   | 4656       | 500.5K      |
| Frequency     | 700~800Mhz | 700~1500Mhz |
| N(sampling)   | 200Mhz     | 1600Mhz     |
| N(FFT length) | 1024       | 1024        |
| N(bit)        | 4          | 4           |

| TianLai                                                            | F-Step                                        | Corner Turn                 | X-Step                |
|--------------------------------------------------------------------|-----------------------------------------------|-----------------------------|-----------------------|
| Phase I<br>192 data streams<br>~200MB/s/stream<br>4.8 GB/s total   | 3.072GFLOPS per<br>stream<br>~600GPLOPS total | 0 GFLOPS<br>But<br>4.8 GB/s | Total:<br>29.8 TFLOPS |
| Phase II<br>2000 data streams<br>~1600MB/s/stream<br>3.2TB/s Total | 24.6 GFLOPS per stream<br>~50TPLOPS total     | 0 GFLOPS<br>But<br>3.2 TB/s | Total:<br>25.6PFLOPS  |

### 基于单GPU的测试结果

#### **GTX 460 PERFORMANCE CHART**



#### **GTX 480 PERFORMANCE CHART**



**GTX480 DATA TRANSMISSION RATE** 



GTX460 DATA TRANSMISSION RATE



# GPU应用(三):银河系整体消光(基本完成)

- 意义(河外): 消光对星系相关函数的畸变(Wenjuan Fang 2011)、 Ia型超新星观测误差(彭秋和老师质疑)等;
- 红化率: CCM89, Donnell94,Fitzpatrick99等.
- 消光图: SFD98 (最流行)
- 问题(SFD98):某些区域高估40%(Arce&Goodman99, Stanek98, Chen99, Yasuda07, Rowles&Froebrich09); 高估两倍或更多(|b| <40, Dobashi05);~14%(SDSS高质量数据Schlaf1y2011)</li>
- 近两年: Schlafly2010(Blue Tips Method), Jones&West2011 (M dwarf Spectra), 3D消光 (LAMOST Jiang, B.W., Liu, X.W.)



The blue points(left subplot) are 14265 BHB candidates , selected from Smith2010 (SVM trained on the spectroscopic sample from Xue2008), with the following criteria: 1. ra > 110 and ra < 260, dec > -10 and dec < 70 2. g - r > -0.3 (Yanny2000)

3. g<20.0

The red small circles on the left: 7 globular cluster, inside which including 94 BHB stars. On right subplot, the cross black circles are the line-of-sight cells with 2 degree radius



| Table 2 lists 94 | 1 BHB stars.        | which are to                           | argeted from              | the above 7 cl     | usters.               |
|------------------|---------------------|----------------------------------------|---------------------------|--------------------|-----------------------|
|                  | a second constantly | ************************************** | an personal and there are | REAL REPORTS 1 201 | COMPANY IN THE REPORT |

46.80

45.86

7.5

23.2

0.03

0.03

15.07

17.51

15.2

17.5

-1.29

-1.41

3.86

0.85

NGC5904

Pal5

15 18 33.22

15 16 05.25

 $+02\ 04\ 51.7$ 

-00 06 41.8



Bayes' Theorem (for cell *i*):

$$p_i(\mathbf{E}|D_i) = p(D_i|E_i)P(\mathbf{E}_i)$$
(1)

$$p_i(\mathbf{E}|D_i) = \prod_{j=1}^{N_i} \sum_{k=1}^{N_u} p(\mathbf{\hat{c}}_{ij}|(\mathbf{E}_i, \mathbf{c_k})) p(\mathbf{E}_i)$$
(2)

$$p(\hat{\mathbf{c}}_{ij}|(\mathbf{E}_i, c_k)) = \frac{1}{(2\pi |\mathbf{\Sigma}|)^{m/2}} \exp(-\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x})$$
(3)

where the  $\mathbf{x} = \mathbf{E} + \mathbf{c}_k - \hat{\mathbf{c}}_{ij}$ , and the *m* means rank of  $\boldsymbol{\Sigma}$ , while  $\boldsymbol{\Sigma}$  is the covariance matrix of the measurement of the color indexes of the star *j*, shown in below:

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sigma_u^2 + \sigma_g^2 & -\sigma_g^2 & 0 & 0\\ -\sigma_g^2 & \sigma_g^2 + \sigma_r^2 & -\sigma_r^2 & 0\\ 0 & -\sigma_r^2 & \sigma_r^2 + \sigma_i^2 & -\sigma_i^2\\ 0 & 0 & -\sigma_i^2 & \sigma_i^2 + \sigma_z^2 \end{bmatrix}$$
(4)

here, the  $\sigma_u, \sigma_g, \sigma_r, \sigma_i, \sigma_z$  are errors of magnitudes.



Giving the Reddening with 0~0.2 in u-g, and photometric measurement error in ugr with 0.02~0.08





### Rv的测量(方法)

#### CCM89

$$\langle A(\lambda)/A(V) \rangle = a(x) + b(x)/R_{V} .$$

$$Coptical/NIR: 1.1 \ \mu m^{-1} \le x \le 3.3 \ \mu m^{-1} \text{ and } y = (x - 1.82);$$

$$a(x) = 1 + 0.17699y - 0.50447y^{2} - 0.02427y^{3} + 0.72085y^{4} + 0.01979y^{5} - 0.77530y^{6} + 0.32999y^{7};$$

$$b(x) = 1.41338y + 2.28305y^{2} + 1.07233y^{3} - 5.38434y^{4} - 0.62251y^{5} + 5.30260y^{6} - 2.09002y^{7}.$$

$$(3b)$$

$$E(u - g) = (x - 1) = (x - 1)^{2} + 1 = 0$$

$$E(x - 1) = (x - 1)^{2} + 1 = 0$$

$$E(u-g) = \left(\left(a_u + \frac{o_u}{R_V}\right) - \left(a_g + \frac{o_g}{R_V}\right)\right) * A_V \quad (6a)$$
$$E(g-r) = \left(\left(a_g + \frac{b_g}{R_V}\right) - \left(a_r + \frac{b_r}{R_V}\right)\right) * A_V \quad (6b)$$

 $F(\mu - \sigma) = A \mu - A \sigma$ 

$$E(r-i) = \left(\left(a_r + \frac{b_r}{R_V}\right) - \left(a_i + \frac{b_i}{R_V}\right)\right) * A_V \quad (6c)$$

$$E(i-z) = \left( (a_i + \frac{b_i}{R_V}) - (a_z + \frac{b_z}{R_V}) \right) * A_V \quad (6d)$$

$$\chi^{2} = \sum_{k=1}^{N_{obj}} \left( \frac{(E(u_{k} - g_{k}) - \bar{E}(u_{k} - g_{k}))^{2}}{\sigma_{ug_{k}}^{2}} + \frac{(E(g_{k} - r_{k}) - \bar{E}(g_{k} - r_{k}))^{2}}{\sigma_{gr_{k}}^{2}} + \frac{(E(r_{k} - i_{k}) - \bar{E}(r_{k} - i_{k}))^{2}}{\sigma_{ri_{k}}^{2}} + \frac{(E(i_{k} - z_{k}) - \bar{E}(i_{k} - z_{k}))^{2}}{\sigma_{iz_{k}}^{2}} \right)$$
(7)

卡方最小确定每个cell的Rv和Av值



# 信息与计算平台建设



### • 服务于天文台的需求

- •为理学院信息与计算科学专业寻求另一特色突破口
- 为三峡大学学生带来更多成长机会

硬件资源

三峡大学理学院数学系集群(6o多万):

• 头节点(IBM System X3650 M2服务器)

 十个计算节点(Hp z600 workstation): Intel Xeon E5520四核处理器, 2.27GHz主频, 1MB二级缓存, 8MB三级缓存, 8G内存, NVIDIA Quadro FX 3800专业显卡一块





刚为学生配置了一台GPU服务器: (i7 + 16GB内存 + 2TB硬盘 + 1kw的电源 + 4 PCI-E + GTX48o)



资源整合

#### 三峡大学理学院机房:

- 新建机房(58机位,信息与计算专业专用)
- 数学建模专业机房(48机位)
- 8o多机位的机房
- 20多个机位的机房
- 平台建设规划:
- 四五十平米的机房整体改造(根据地):部分 用于半开放实验室、部分用于研究生教师办公、小 机房。
- 充分利用共享计算资源(学校、国台)
- 学生联合培养模式(大四研一两年专业技能训练+ 研二研三国台跟踪项目训练)
- 新增一个信息技术联合实验室(目标)

合作: 信息与计算机学院、智能与图像研究所、三峡大学软件技术公司











# **Ø**SciDB



Microsoft<sup>®</sup> Research WorldWide Telescope

#### 本科、硕士毕业设计

